"Our [Irving Kaplansky and Paul Halmos] general philosophy about linear algebra is this: we think in baseless terms, write in baseless terms, but when it comes to serious business, we lock ourselves in the office and do our best with matrices."
Irving Kaplansky
.
, .
x, y β ββΏ xα΅y
:
, . ,
.
x β βα΅, y β ββΏ ( ) xyα΅ β βα΅Λ£βΏ. , : (xyα΅)α΅’β±Ό = xα΅’yβ±Ό,
A β ββΏΛ£βΏ, tr(A) ( trA), :
:
A β ββΏΛ£βΏ: trA = trAα΅.
A,B β ββΏΛ£βΏ: tr(A + B) = trA + trB.
A β ββΏΛ£βΏ t β β: tr(tA) = t trA.
A,B, , AB : trAB = trBA.
A,B,C, , ABC : trABC = trBCA = trCAB ( β ).
β₯xβ₯ x «» . , , lβ:
, βxββΒ²=xα΅x.
: f : βn β β, :
x β ββΏ: f(x) β₯ 0 ().
f(x) = 0 , x = 0 ( ).
x β ββΏ t β β: f(tx) = |t|f(x) ().
x, y β ββΏ: f(x + y) β€ f(x) + f(y) ( )
lβ
lβ
lp, p β₯ 1
, :
{xβ, xβ, ..., xβ} β ββ , . - , . ,
Ξ±β,β¦, Ξ±β-β β β, , xβ, ..., xβ
; . ,
, xβ = β2xβ + xβ.
A β βα΅Λ£βΏ , . , , β A. , .
( ), A β βα΅Λ£βΏ , A rank(A) rk(A); rang(A), rg(A) r(A). :
A β βα΅Λ£βΏ: rank(A) β€ min(m,n). rank(A) = min(m,n), A .
A β βα΅Λ£βΏ: rank(A) = rank(Aα΅).
A β βα΅Λ£βΏ, B β βnΓp: rank(AB) β€ min(rank(A),rank(B)).
A,B β βα΅Λ£βΏ: rank(A + B) β€ rank(A) + rank(B).
x, y β ββΏ , xα΅y = 0. x β ββΏ , ||x||β = 1.
U β ββΏΛ£βΏ , ( ). , .
,
, , . , U (U β βα΅Λ£βΏ, n < m), , Uα΅U = I, UUα΅ β I. , , .
, ,
x β ββΏ U β ββΏΛ£βΏ.
-
{xβ, xβ, ..., xβ} , {xβ, ..., xβ},
R(A) ( ) A β βα΅Λ£βΏ . ,
-, A β βα΅Λ£βΏ ( N(A) ker A), , A ,
A β ββΏΛ£βΏ x β ββΏ xα΅ Ax. :
,
A β πβΏ , x β ββΏ xα΅Ax > 0.
( A > 0),
.
A β πβΏ , xα΅ Ax β₯ 0.
( A β₯ 0),
.
A β πβΏ
, x β ββΏ xα΅Ax < 0.
, A β πβΏ (
), x β ββΏ xα΅Ax β€ 0.
, A β πβΏ , , , xβ, xβ β ββΏ ,
.
A β ββΏΛ£βΏ Ξ» β β x β ββΏ ,
, A x , Ξ». , x β ββΏ β β A(cx) = cAx = cΞ»x = Ξ»(cx). , cx . , , Ξ», 1 ( , x, βx, ).
" Data Science". , , , .