Linear Algebra for Data Scientists

Illustration: UCI
Illustration: UCI

"Our [Irving Kaplansky and Paul Halmos] general philosophy about linear algebra is this: we think in baseless terms, write in baseless terms, but when it comes to serious business, we lock ourselves in the office and do our best with matrices."





Irving Kaplansky





.





 





kdnuggets
kdnuggets

, .





 

x, y ∈ ℝⁿ xα΅€y





:





, . ,





.





 





x ^ Ty = y ^ Tx

x ∈ ℝᡐ, y ∈ ℝⁿ ( ) xyα΅€ ∈ ℝᡐˣⁿ. , : (xyα΅€)α΅’β±Ό = xα΅’yβ±Ό,





 

A ∈ ℝⁿˣⁿ, tr(A) ( trA), : 





:





  • A ∈ ℝⁿˣⁿ: trA = trAα΅€.





  • A,B ∈ ℝⁿˣⁿ: tr(A + B) = trA + trB.





  • A ∈ ℝⁿˣⁿ t ∈ ℝ: tr(tA) = t trA.





  • A,B, , AB : trAB = trBA.





  • A,B,C, , ABC : trABC = trBCA = trCAB (  β€” ).





TimoElliott
TimoElliott

βˆ₯xβˆ₯ x «» . , , lβ‚‚:





, β€–xβ€–β‚‚Β²=xα΅€x.





: f : ℝn β†’ ℝ, :





  1. x ∈ ℝⁿ: f(x) β‰₯ 0 ().





  2. f(x) = 0 , x = 0 ( ).





  3. x ∈ ℝⁿ t ∈ ℝ: f(tx) = |t|f(x) ().





  4. x, y ∈ ℝⁿ: f(x + y) ≀ f(x) + f(y) ( )





 





l₁





l∞





lp, p β‰₯ 1





, :





 

{x₁, xβ‚‚, ..., xβ‚™} βŠ‚ β„β‚˜ , . - , . ,





α₁,…, Ξ±β‚™-₁ ∈ ℝ, , x₁, ..., xβ‚™



; . ,





, x₃ = βˆ’2xβ‚™ + xβ‚‚.





A ∈ ℝᡐˣⁿ , . , ,  β€” A. , .





( ), A ∈ ℝᡐˣⁿ , A rank(A) rk(A); rang(A), rg(A) r(A). :





  • A ∈ ℝᡐˣⁿ: rank(A) ≀ min(m,n). rank(A) = min(m,n), A .





  • A ∈ ℝᡐˣⁿ: rank(A) = rank(Aα΅€).





  • A ∈ ℝᡐˣⁿ, B ∈ ℝnΓ—p: rank(AB) ≀ min(rank(A),rank(B)).





  • A,B ∈ ℝᡐˣⁿ: rank(A + B) ≀ rank(A) + rank(B).





 

x, y ∈ ℝⁿ , xα΅€y = 0. x ∈ ℝⁿ , ||x||β‚‚ = 1.





U ∈ ℝⁿˣⁿ , ( ). , .





,





, , . , U (U ∈ ℝᡐˣⁿ, n < m), , Uα΅€U = I, UUα΅€ β‰  I. , , .





, ,





x ∈ ℝⁿ U ∈ ℝⁿˣⁿ.





TimoElliott
TimoElliott

-

{x₁, xβ‚‚, ..., xβ‚™} , {x₁, ..., xβ‚™},





R(A) ( ) A ∈ ℝᡐˣⁿ . ,





 -, A ∈ ℝᡐˣⁿ ( N(A) ker A), , A ,





 

A ∈ ℝⁿˣⁿ x ∈ ℝⁿ xα΅€ Ax. :





,





 





  • A ∈ π•ŠβΏ , x ∈ ℝⁿ xα΅€Ax > 0.





    ( A > 0),





    .





  • A ∈ π•ŠβΏ , xα΅€ Ax β‰₯ 0.









    ( A β‰₯ 0),





    .





  • A ∈ π•ŠβΏ





  • , x ∈ ℝⁿ xα΅€Ax < 0.





  • , A ∈ π•ŠβΏ (





    ), x ∈ ℝⁿ xα΅€Ax ≀ 0.





  • , A ∈ π•ŠβΏ , , , x₁, xβ‚‚ ∈ ℝⁿ ,









    .





 

A ∈ ℝⁿˣⁿ Ξ» ∈ β„‚ x ∈ ℂⁿ ,





, A x , Ξ». , x ∈ ℂⁿ ∈ β„‚ A(cx) = cAx = cΞ»x = Ξ»(cx). , cx . , , Ξ», 1 ( , x, –x, ).





 






" Data Science". , , , .













All Articles