Sim-sim open: how I taught my front door to recognize me by sight

Friday's work day at a distance was already coming to an end, when there was a knock on the door to announce the installation of a new intercom. Upon learning that the new intercom has a mobile application that allows you to answer calls without being at home, I became interested and immediately downloaded it to my phone. After logging in, I discovered an interesting feature of this application - even without an active call to my apartment, I could look into the intercom camera and open the door at any time. "Yes, this is online ARI at the entrance door!" - clicked in my head. The fate of the coming weekend was sealed.





Video demonstration at the end of the article.





Shot from the film "The Fifth Element"
Shot from the film "The Fifth Element"

Disclaimer

. , - — .





API

, , . - — , . lkit — , http(s) Android .





— Android- Certificate authority , . , Android 7 .





root , Android, Android Studio. ADB , Certificate pinning .





Successful connection to HTTP Toolkit
HTTP Toolkit

, — , .





Door open request

:





  1. : POST /rest/v1/places/{place_id}/accesscontrols/{control_id}/actions



    JSON- {"name": "accessControlOpen"}







  2. () : GET /rest/v1/places/{place_id}/accesscontrols/{control_id}/videosnapshots







  3. : GET /rest/v1/forpost/cameras/{camera_id}/video?LightStream=0







HTTP Authorization — , . Advanced REST Client, , Authorization API , , .





Python requests



, :





HEADERS = {"Authorization": "Bearer ###"}
ACTION_URL = "https://###.ru/rest/v1/places/###/accesscontrols/###/"
VIDEO_URL = "https://###.ru/rest/v1/forpost/cameras/###/video?LightStream=0"

def get_image():
    result = requests.get(f'{ACTION_URL}/videosnapshots', headers=HEADERS)
    if result.status_code != 200:
        logging.error(f"Failed to get an image with status code {result.status_code}")
        return None
    logging.warning(f"Image received successfully in {result.elapsed.total_seconds()}sec")
    return result.content

def open_door():
    result = requests.post(
        f'{ACTION_URL}/actions', headers=HEADERS, json={"name": "accessControlOpen"})
    if result.status_code != 200:
        logging.error(f"Failed to open the door with status code {result.status_code}")
        return False
    logging.warning(f"Door opened successfully in {result.elapsed.total_seconds()}sec")
    return True

def get_videostream_link():
    result = requests.get(VIDEO_URL, headers=HEADERS)
    if result.status_code != 200:
        logging.error(f"Failed to get stream link with status code {result.status_code}")
        return False
    logging.warning(f"Stream link received successfully in {result.elapsed.total_seconds()}sec")
    return result.json()['data']['URL']

      
      



, — Intel(R) Xeon(R) CPU E5-2650L v3 @ 1.80GHz



, 1GB 0 GPU. , , .





, . OpenVINO Toolkit — Intel, CPU.





Interactive Face Recognition Demo — , . , - 2020.3, pip 2021.1. OpenVINO .





, . ( ), , , :





class ImageProcessor:
    def __init__(self):
        self.frame_processor = FrameProcessor()

    def process(self, image):
        detections = self.frame_processor.process(image)
        labels = []
        for roi, landmarks, identity in zip(*detections):
            label = self.frame_processor.face_identifier.get_identity_label(
                identity.id)
            labels.append(label)
        return labels
      
      



. , get_image()



.





100 runs on an image with known face:
Total time: 7.356s
Time per frame: 0.007s
FPS: 135.944

100 runs on an image without faces:
Total time: 2.985s
Time per frame: 0.003s
FPS: 334.962
      
      



, .





1 FPS:

, , . , MVP get_image()



.





class ImageProcessor:
		# <...>
    def process_single_image(self, image):
        nparr = np.fromstring(image, np.uint8)
        img_np = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
        labels = self.process(img_np)
        return labels

def snapshot_based_intercom_id():
    processor = ImageProcessor()

    last_open_door_time = time.time()
    while True:
        start_time = time.time()
        image = get_image()
        result = processor.process_single_image(image)
        logging.info(f'{result} in {time.time() - start_time}s')
        # Successfull detections are "face{N}"
        if any(['face' in res for res in result]):
            if start_time - last_open_door_time > 5:
                open_door()
                with open(f'images/{start_time}_OK.jfif', 'wb') as f:
                    f.write(image)
                last_open_door_time = start_time
      
      



, , . , .. .





Moment of successful recognition, version with processing of individual images
,

! , . , — , .. API . , 0.7 0.6 , .





30 FPS:

:





vcap = cv2.VideoCapture(link)
success, frame = vcap.read()
      
      



, 30 FPS. : read()



. , , , . , , 30 — , .





: vcap.set(CV_CAP_PROP_BUFFERSIZE, 0);



. , OpenCV 3.4, - , . , StackOverflow — , ( , ).





ImageProcessor



3 :





class CameraBufferCleanerThread(threading.Thread):
    def __init__(self, camera, name='camera-buffer-cleaner-thread'):
        self.camera = camera
        self.last_frame = None
        self.finished = False
        super(CameraBufferCleanerThread, self).__init__(name=name)
        self.start()

    def run(self):
        while not self.finished:
            ret, self.last_frame = self.camera.read()

    def __enter__(self): return self

    def __exit__(self, type, value, traceback):
        self.finished = True
        self.join()

class ImageProcessor:
		# <...>
    def process_stream(self, link):
        vcap = cv2.VideoCapture(link)
        interval = 0.3 # ~3 FPS
        with CameraBufferCleanerThread(vcap) as cam_cleaner:
            while True:
                frame = cam_cleaner.last_frame
                if frame is not None:
                    yield (self.process(frame), frame)
                else:
                    yield (None, None)
                time.sleep(interval)
      
      



snapshot_based_intercom_id



:





def stream_based_intercom_id():
    processor = ImageProcessor()

    link = get_videostream_link()
    # To notify about delays
    last_time = time.time()
    last_open_door_time = time.time()
    for result, np_image in processor.process_stream(link):
        current_time = time.time()
        delta_time = current_time - last_time
        if delta_time < 1:
            logging.info(f'{result} in {delta_time}')
        else:
            logging.warning(f'{result} in {delta_time}')
        last_time = current_time
        if result is None:
            continue
        if any(['face' in res for res in result]):
            if current_time - last_open_door_time > 5:
                logging.warning(
                  	f'Hey, I know you - {result[0]}! Opening the door...')
                last_open_door_time = current_time
                open_door()
                cv2.imwrite(f'images/{current_time}_OK.jpg', np_image)
      
      



— , .





Moment of successful recognition, version with video stream processing
,

Telegram

/. .





python-telegram-bot



, callback / .





class TelegramInterface:
    def __init__(self, login_whitelist, state_callback):
        self.state_callback = state_callback
        self.login_whitelist = login_whitelist
        self.updater = Updater(
            token = "###", use_context = True)
        self.run()

    def run(self):
        dispatcher = self.updater.dispatcher
        dispatcher.add_handler(CommandHandler("start", self.start))
        dispatcher.add_handler(CommandHandler("run", self.run_intercom))
        dispatcher.add_handler(CommandHandler("stop", self.stop_intercom))

        self.updater.start_polling()

    def run_intercom(self, update: Update, context: CallbackContext):
        user = update.message.from_user
        update.message.reply_text(
            self.state_callback(True) if user.username in self.login_whitelist else 'not allowed',
            reply_to_message_id=update.message.message_id)

    def stop_intercom(self, update: Update, context: CallbackContext):
        user = update.message.from_user
        update.message.reply_text(
            self.state_callback(False) if user.username in self.login_whitelist else 'not allowed',
            reply_to_message_id=update.message.message_id)

    def start(self, update: Update, context: CallbackContext) -> None:
        update.message.reply_text('Hi!')
        
        
class TelegramBotThreadWrapper(threading.Thread):
    def __init__(self, state_callback, name='telegram-bot-wrapper'):
        self.whitelist = ["###", "###"]
        self.state_callback = state_callback
        super(TelegramBotThreadWrapper, self).__init__(name=name)
        self.start()

    def run(self):
        self.bot = TelegramInterface(self.whitelist, self.state_callback)

      
      



intercom_id



, :





def stream_based_intercom_id_with_telegram():
    processor = ImageProcessor()

    loop_state_lock = threading.Lock()

    loop_should_run = False
    loop_should_change_state_cv = threading.Condition(loop_state_lock)

    is_loop_finished = True
    loop_changed_state_cv = threading.Condition(loop_state_lock)

    def stream_processing_loop():
        nonlocal loop_should_run
        nonlocal loop_should_change_state_cv
        nonlocal is_loop_finished
        nonlocal loop_changed_state_cv

        while True:
            with loop_should_change_state_cv:
                loop_should_change_state_cv.wait_for(lambda: loop_should_run)
                is_loop_finished = False
                loop_changed_state_cv.notify_all()
                logging.warning(f'Loop is started')
            link = get_videostream_link()
            last_time = time.time()
            last_open_door_time = time.time()
            for result, np_image in processor.process_stream(link):
                with loop_should_change_state_cv:
                    if not loop_should_run:
                        is_loop_finished = True
                        loop_changed_state_cv.notify_all()
                        logging.warning(f'Loop is stopped')
                        break
                current_time = time.time()
                delta_time = current_time - last_time
                if delta_time < 1:
                    logging.info(f'{result} in {delta_time}')
                else:
                    logging.warning(f'{result} in {delta_time}')
                last_time = current_time
                if result is None:
                    continue
                if any(['face' in res for res in result]):
                    if current_time - last_open_door_time > 5:
                        logging.warning(f'Hey, I know you - {result[0]}! Opening the door...')
                        last_open_door_time = current_time
                        open_door()
                        cv2.imwrite(f'images/{current_time}_OK.jpg', np_image)

    def state_callback(is_running):
        nonlocal loop_should_run
        nonlocal loop_should_change_state_cv
        nonlocal is_loop_finished
        nonlocal loop_changed_state_cv

        with loop_should_change_state_cv:
            if is_running == loop_should_run:
                return "Intercom service state is not changed"
            loop_should_run = is_running
            if loop_should_run:
                loop_should_change_state_cv.notify_all()
                loop_changed_state_cv.wait_for(lambda: not is_loop_finished)
                return "Intercom service is up"
            else:
                loop_changed_state_cv.wait_for(lambda: is_loop_finished)
                return "Intercom service is down"

    telegram_bot = TelegramBotThreadWrapper(state_callback)
    logging.warning("Bot is ready")
    stream_processing_loop()
      
      



:





Despite the possibilities that smart intercom technology brings to residents, hundreds (thousands?) Of driveway doors with cameras and microphones (yes, there is audio in the randomly received video stream!) , opening up new opportunities for privacy violations.





I would prefer that access to the video stream was provided only at the time of a call to the apartment and the ongoing three-day recording, positioned as a means of disclosing violations, was stored not on the company's servers, but directly in the intercom, with the ability to access it upon request. Or not at all.








All Articles