In the physical sciences, simplifications and approximate values ββare often allowed: the orbits are always circular, the projectiles fly without air resistance, and the pendulum is deflected only by a small angle.
, . VPython 3D- .
VPython , Jupyter notebook, 3D- . notebook (, IDLE), , . Internet Explorer , Chrome, .
?
Pypi, pip:
pip install vpython
import vpython as vpvp.cylinder()
, :
vp.cylinder(pos=vp.vector( 4, 0, 0), size=vp.vector(4,4,4), color = vp.color.red)
β . , , , .
β β . , , , .
-, , , .
-, . , , , .
.
. , . .
, βR β, . βR β, :
Python-, .
, :
import vpython as vp
vp.scene.title = "Modeling the motion of planets with the gravitational force"
vp.scene.height = 600
vp.scene.width = 800
( ):
planet = vp.sphere(pos=vp.vector(1,0,0), radius=0.05, color=vp.color.green,
mass = 1, momentum=vp.vector(0,30,0), make_trail=True )
star = vp.sphere(pos=vp.vector(0,0,0), radius=0.2, color=vp.color.yellow,
mass = 2.0*1000, momentum=vp.vector(0,0,0), make_trail=True)
, :
def gravitationalForce(p1,p2):
G = 1 #real-world value is : G = 6.67e-11
rVector = p1.pos - p2.pos
rMagnitude = vp.mag(rVector)
rHat = rVector / rMagnitude
F = - rHat * G * p1.mass * p2.mass /rMagnitude**2
return F
, β , :
t = 0
dt = 0.0001 #The step size. This should be a small number
, t
.
: rate()
, , sleep()
while True:
vp.rate(500)
#calculte the force using gravitationalForce function
star.force = gravitationalForce(star,planet)
planet.force = gravitationalForce(planet,star)
#Update momentum, position and time
star.momentum = star.momentum + star.force*dt
planet.momentum = planet.momentum + planet.force*dt
star.pos = star.pos + star.momentum/star.mass*dt
planet.pos = planet.pos + planet.momentum/planet.mass*dt
t+= dt
.
: RGB :
star = vp.sphere(pos=vp.vector(0,0,0), radius=0.2, color=vp.color.yellow,
mass = 1000, momentum=vp.vector(0,0,0), make_trail=True)
planet1 = vp.sphere(pos=vp.vector(1,0,0), radius=0.05, color=vp.color.green,
mass = 1, momentum=vp.vector(0,30,0), make_trail=True)
planet2 = vp.sphere(pos=vp.vector(0,3,0), radius=0.075, color=vp.vector(0.0,0.82,0.33),#RGB color
mass = 2, momentum=vp.vector(-35,0,0), make_trail=True)
planet3 = vp.sphere(pos=vp.vector(0,-4,0), radius=0.1, color=vp.vector(0.58,0.153,0.68),
mass = 10, momentum=vp.vector(160,0,0), make_trail=True)
:
while (True):
vp.rate(500)
#Calculte the force using gravitationalForce function
star.force = gravitationalForce(star,planet1)+gravitationalForce(star,planet2)+gravitationalForce(star,planet3)
planet1.force = gravitationalForce(planet1,star)+gravitationalForce(planet1,planet2)+gravitationalForce(planet1,planet3)
planet2.force = gravitationalForce(planet2,star)+gravitationalForce(planet2,planet1)+gravitationalForce(planet2,planet3)
planet3.force = gravitationalForce(planet3,star)+gravitationalForce(planet3,planet1)+gravitationalForce(planet3,planet2)
#Update momentum, position and time
star.momentum = star.momentum + star.force*dt
planet1.momentum = planet1.momentum + planet1.force*dt
planet2.momentum = planet2.momentum + planet2.force*dt
planet3.momentum = planet3.momentum + planet3.force*dt
star.pos = star.pos + star.momentum/star.mass*dt
planet1.pos = planet1.pos + planet1.momentum/planet1.mass*dt
planet2.pos = planet2.pos + planet2.momentum/planet2.mass*dt
planet3.pos = planet3.pos + planet3.momentum/planet3.mass*dt
t += dt
:
VPython 3D- , .