A new class of prime numbers that I discovered by accident

Hello everyone! This is my first post on Habré, so I will introduce myself: my name is Kostya, I am a C ++ developer, a bit of a musician, a beginner ML engineer and a lover of mathematics. As you might guess, this post will be about my math hobby.





UPD: Conclusions have been added. A little later, I will add examples of other primes and other number systems that will be used to generate cyclic numbers, and as a consequence, cyclic primes.





Background: about 14 years ago, I encountered the phenomenon of cyclic numbers, I was fascinated by the patterns that are formed in them and promised myself to explain them. At first, I made naive attempts at analysis, which brought very mediocre results, but in 2016 I was able to see for myself that the rational fraction 1/7 can be represented by a converging geometric progression. To be honest, at that moment I did not even understand that it was a geometric progression, but I recognized it visually. In 2018, I decided to put all my skills and diligence to find as many patterns of cyclic numbers as possible. I found a lot, but now I want to share what I consider to be the most important, and ironically, I found by accident: a new class of prime numbers.





I was researching full reptend prime, prime numbers, and to be more precise - such number systems for prime numbers, in which 1 / P, where P is a prime number, will give a periodic fraction, the period of which will be equal to the cyclic number.





Here you should probably give the very definition of a cyclic number:





A cyclic number is an integer whose cyclic permutations are the product of that number and consecutive numbers.





— 142857, "" + . , . , , , . , " . ".





:





142857 * 2 = 285714





142857 * 3 = 428571





142857 * 4 = 571428





142857 * 5 = 714285





142857 * 6 = 857142





, 142857 2 6, 142857. .





, 1/7 . 1/7, . .





1/7 . ! , , - , .





, , , 7 . - .





, full reptend prime, «The Philisophy of Arithmetic: Exhibiting a Progressive View on the Theory and Practice of Calculation».





200 , . « », 1/7 .





«History of the Theory of Numbers» , full reptend prime.





«The Penguin Dictionary of Curious and Interesting Numbers» repunit.





«The Book of Numbers» , .





, , , , . .





, 142857, 1428571, . . , 1428571 1, — 7.





, 142857, ( 10 ). , .





7 , 142857: 1428571, 71428571, 7142857142857, 571428571428571, 1428571428571428571428571, 28571428571428571428571428571, 7142857142857142857142857142857.





: 7, 8, 13, 15, 25, 29, 31.





.













2





34





4





41





7





104





5





273





5





304





1





355





7





440





7





571





1





823





7





2215





5





2523





4





4379





2





4510





4





7553





4





7679





7





9536





23 , 101000.





. Full reptend prime

, , , , .





full reptend prime long prime. . , , full reptend .





full reptend

P — , , 1/P, N , P-1, , P N full reptend.





P full reptend N, P-1 .





P, , . P, - , P - full reptend prime.





P = 7 . 1/P = 0,(142857). 6, P-1. 1/P .. P-1/P:





2/P = 0,(285714)





3/P = 0,(428571)





4/P = 0,(571428)





5/P = 0,(714285)





6/P = 0,(857142)





, . . , . , . - 1/P. full reptend.





:





P 1/P. P. P = 2 2, P = 3 3, ..





n:





( n) mod P = 1





P :





, , full reptend, 7, 17, 19, 23, 29. 2 5 , .





P = 3 : 1/3 = 0,(3). P = 11 , 2 : 1/11 = 0,(09).





P = 13 , 6, P-1. (P-1)/2, , . P 2nd reptend level prime. 2nd reptend level prime:





1/13 = 0,(076923)





2/13 = 0,(153846)





  P = 13, P-1/P, , 1/13 2/13, .





 3/13 = 0,(230769) — 1





4/13 = 0,(307692) — 1





5/13 = 0,(384615) — 2





6/13 = 0,(461538) — 2





7/13 = 0,(538461) — 2





8/13 = 0,(615384) — 2





9/13 = 0,(692307) — 1





10/13 = 0,(769230) — 1





11/13 = 0,(846153) — 2





12/13 = 0,(923076) — 1





2nd reptend level prime : .





.. : 769230769, 769230769230769230769,769230769230769230769230769230769.





: 1538461.





, , full reptend prime, . P = 7 2 , full reptend, 3 5 — .





7 . 12, . , 17 19, 59 61.





, full reptend n-th repntend level . P N .





1/P:





\ begin {equation} \ sum \ limits_ {n = 0} ^ \ infty \ frac {s * r ^ n} {base ^ {length (n + 1)}} = \ frac {1} {P} \ end { equation}

s — , 1/P:





\ begin {equation} s = [\ frac {1} {P} * base ^ {length}] \ end {equation}

full reptend prime , 1 . :)





length , s, . length .





r , 1/P. 1/P P-1, full reptend , P-1.





  , , , . P= 7, .. full reptend .





: [3, 2, 6, 4, 5, 1]. . base mod P. , :





\ begin {equation} \ begin {cases} r_0 = 1 \\ r_n = r_ {n-1} * (base \ mod P) \\ \ end {cases} \ end {equation}

:





\ begin {equation} r_ {length} = base ^ {length} \ mod P \ end {equation}

, : P— ; base — ; length — , .





\ begin {equation} \ frac {1} {P} = \ sum \ limits_ {n = 0} ^ \ infty \ frac {[\ frac {1} {P} * base ^ {length}] * (base ^ { length} \ mod P) ^ n} {base ^ {length (n + 1)}} \ end {equation}

P = 7 c s, :





\ begin {equation} \ frac {1} {7} = \ sum \ limits_ {n = 0} ^ \ infty \ frac {1 * 3 ^ n} {10 ^ {n + 1}} \ end {equation}

s = 1, 0,(142857), .. length = 1. r = 3, , length = 1.





\ begin {equation} \ frac {1} {7} = 0.1 + 0.03 + 0.009 + 0.0027 + 0.00081 + .. \ end {equation}

3 10. :





\begin{equation} \frac{1}{7} = \sum\limits_{n=0}^\infty\frac{14*2^n}{10^{2(n+1)}} \end{equation} \begin{equation} \frac{1}{7} = 0.14 + 0.0028 + 0.000056 + 0.00000112 + .. \end{equation}

2 100. s = 14, 0,(142857), .. length = 2. r = 2, , length = 2. , , , .





length 1:





\begin{equation} \frac{1}{7} = \sum\limits_{n=0}^\infty\frac{142*6^n}{10^{3(n+1)}} \end{equation} \begin{equation} \frac{1}{7} = \sum\limits_{n=0}^\infty\frac{1428*4^n}{10^{4(n+1)}} \end{equation} \begin{equation} \frac{1}{7} = \sum\limits_{n=0}^\infty\frac{14285*5^n}{10^{5(n+1)}} \end{equation} \begin{equation} \frac{1}{7} = \sum\limits_{n=0}^\infty\frac{142857*1^n}{10^{6(n+1)}} \end{equation}

, s :





\begin{equation} \frac{1}{7} = \sum\limits_{n=0}^\infty\frac{1428571*3^n}{10^{7(n+1)}} \end{equation}

s - , . . .





, , , s P N — .





P = 17:





\begin{equation} \frac{1}{17} = \sum\limits_{n=0}^\infty\frac{5*15^n}{10^{2(n+1)}} \end{equation} \ begin {equation} \ frac {1} {17} = \ sum \ limits_ {n = 0} ^ \ infty \ frac {58 * 14 ^ n} {10 ^ {3 (n + 1)}} \ end { equation} \ begin {equation} \ frac {1} {17} = \ sum \ limits_ {n = 0} ^ \ infty \ frac {588 * 4 ^ n} {10 ^ {4 (n + 1)}} \ end { equation}

89 . 1/89 = 0,0112359.. — , . , :





\ begin {equation} \ frac {1} {89} = \ sum \ limits_ {n = 0} ^ \ infty \ frac {1 * 11 ^ n} {10 ^ {2 (n + 1)}} \ end { equation} \ begin {equation} \ frac {1} {89} = \ sum \ limits_ {n = 0} ^ \ infty \ frac {Fibonacci (n)} {10 ^ {n + 1}} \ end {equation}

, — 109.





1/89 : (-1)n+1. , , .





\ begin {equation} \ frac {1} {109} = \ sum \ limits_ {n = 0} ^ \ infty \ frac {9 * 17 ^ n} {10 ^ {3 (n + 1)}} \ end { equation} \ begin {equation} \ frac {1} {109} = \ sum \ limits_ {n = 0} ^ \ infty \ frac {Fibonacci (n) * (- 1) ^ {n + 1}} {10 ^ {n +1}} \ end {equation}

, , .





-

s , , .





 , P = 7, 142857, 1428571. , , 1/P, 1/P .. P-1/P. , , 71428571.





 , . , . , , , , , .





  , s, , , , . - .





P = 7. 1/P, P-1/P, , s : 2, 5, 7, 71, 571, 2857, 28571.





, - .





- P N. , full reptend prime .





,

, . P N, . , P, , .





- :





, P, , . , 142857. 40 5SMYBH ( 5, 28, 22, 34, 11, 17).





, , H5SMYBH 40 , , : 70217142857.





, . , , , .





P=7 N=10:





1) 1428571





2) 71428571





3) 7142857142857





4) 571428571428571





5) 1428571428571428571428571





6) 28571428571428571428571428571





7) 7142857142857142857142857142857





8) 2857142857142857142857142857142857





9) 42857142857142857142857142857142857142857





40 :





1) MCYB





2) Ra2YB





3) 13NYIMYBH





4) 277Sb5SMYB





5) 1D8TJS2CYBH5SMYB





6) GP98QAT0SMYBH5SMYB





7) 2NbRO471EIMYBH5SMYBH





8) PdGa11UDOPSMYBH5SMYBH





9) 3WAEQ3OR61AQVH5SMYBH5SMYBH





P=7 N=10 :





1) H5SMYBH





2) - 77 , 5SMYBH, B:





5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYB





:





1) 70217142857





– 12 , 123 .





2) 3262280440470765442418939358741703168874849426...





...28571428571428571428571428571428571428571428571428571428571428571428571428571





- , .





,

P = 7 N = 10. :





Ns(i) = N + 3*N*i + ((i + 1) % 2) * i*N*4





i — . i = 0 , full reptend prime. .





, , .





N = 3, 10, 17, 31, 38, 59:





Ns(i) = N + 3*N*i + ((i + 1) % 2) * i*N





N = 5, 19, 26, 33, 47, 61:





Ns(i) = N + N*i + ((i + 1) % 2) * i*5*N





N = 12:





Ns(i) = N + N*i + ((i + 1) % 2) * i*5*N





N = 40 , N = 10.





N = 24, N = 12.





, , N.





 , 40 , . , , - , 40, , 40 .





12 24 . , , , 12.





 , , , full reptend.





, , , 40 10 .





P = 5, . P = 17 , , base, base*2, base*4, .





, , .





, , . . .





, , . . : , , , , .





#1: 40 . 1/740=0.(5SMYBH)40, H5SMYBH40, 70217142857. 7142857, 40 .





#2: 10 . 571428571428571. 40 1D8TJS2CYBH5SMYB40. , YBH5SMYB , .





,

, . . , .





, . , .









  • , ,





  • ,





!





, full reptend prime .





. , , github. .





, full reptend prime. .





, , , .





, 2019 , \ .





, , arxiv.org – . , . – :





, arxiv ? ? 6- , .





Thank you all for your attention! I hope my first article was not tedious, there are a few more ahead and not all of them will be about mathematics.








All Articles