Hello everyone! This is my first post on Habré, so I will introduce myself: my name is Kostya, I am a C ++ developer, a bit of a musician, a beginner ML engineer and a lover of mathematics. As you might guess, this post will be about my math hobby.
UPD: Conclusions have been added. A little later, I will add examples of other primes and other number systems that will be used to generate cyclic numbers, and as a consequence, cyclic primes.
Background: about 14 years ago, I encountered the phenomenon of cyclic numbers, I was fascinated by the patterns that are formed in them and promised myself to explain them. At first, I made naive attempts at analysis, which brought very mediocre results, but in 2016 I was able to see for myself that the rational fraction 1/7 can be represented by a converging geometric progression. To be honest, at that moment I did not even understand that it was a geometric progression, but I recognized it visually. In 2018, I decided to put all my skills and diligence to find as many patterns of cyclic numbers as possible. I found a lot, but now I want to share what I consider to be the most important, and ironically, I found by accident: a new class of prime numbers.
I was researching full reptend prime, prime numbers, and to be more precise - such number systems for prime numbers, in which 1 / P, where P is a prime number, will give a periodic fraction, the period of which will be equal to the cyclic number.
Here you should probably give the very definition of a cyclic number:
A cyclic number is an integer whose cyclic permutations are the product of that number and consecutive numbers.
— 142857, "" + . , . , , , . , " . ".
:
142857 * 2 = 285714
142857 * 3 = 428571
142857 * 4 = 571428
142857 * 5 = 714285
142857 * 6 = 857142
, 142857 2 6, 142857. .
, 1/7 . 1/7, . .
1/7 . ! , , - , .
, , , 7 . - .
, full reptend prime, «The Philisophy of Arithmetic: Exhibiting a Progressive View on the Theory and Practice of Calculation».
200 , . « », 1/7 .
«History of the Theory of Numbers» , full reptend prime.
«The Penguin Dictionary of Curious and Interesting Numbers» repunit.
«The Book of Numbers» , .
, , , , . .
, 142857, 1428571, . . , 1428571 1, — 7.
, 142857, ( 10 ). , .
7 , 142857: 1428571, 71428571, 7142857142857, 571428571428571, 1428571428571428571428571, 28571428571428571428571428571, 7142857142857142857142857142857.
: 7, 8, 13, 15, 25, 29, 31.
.
|
|
2 |
34 |
4 |
41 |
7 |
104 |
5 |
273 |
5 |
304 |
1 |
355 |
7 |
440 |
7 |
571 |
1 |
823 |
7 |
2215 |
5 |
2523 |
4 |
4379 |
2 |
4510 |
4 |
7553 |
4 |
7679 |
7 |
9536 |
23 , 101000.
. Full reptend prime
, , , , .
full reptend prime long prime. . , , full reptend .
full reptend
P — , , 1/P, N , P-1, , P N full reptend.
P full reptend N, P-1 .
P, , . P, - , P - full reptend prime.
P = 7 . 1/P = 0,(142857). 6, P-1. 1/P .. P-1/P:
2/P = 0,(285714)
3/P = 0,(428571)
4/P = 0,(571428)
5/P = 0,(714285)
6/P = 0,(857142)
, . . , . , . - 1/P. full reptend.
:
P 1/P. P. P = 2 2, P = 3 3, ..
n:
( n) mod P = 1
P :
, , full reptend, 7, 17, 19, 23, 29. 2 5 , .
P = 3 : 1/3 = 0,(3). P = 11 , 2 : 1/11 = 0,(09).
P = 13 , 6, P-1. (P-1)/2, , . P 2nd reptend level prime. 2nd reptend level prime:
1/13 = 0,(076923)
2/13 = 0,(153846)
P = 13, P-1/P, , 1/13 2/13, .
3/13 = 0,(230769) — 1
4/13 = 0,(307692) — 1
5/13 = 0,(384615) — 2
6/13 = 0,(461538) — 2
7/13 = 0,(538461) — 2
8/13 = 0,(615384) — 2
9/13 = 0,(692307) — 1
10/13 = 0,(769230) — 1
11/13 = 0,(846153) — 2
12/13 = 0,(923076) — 1
2nd reptend level prime : .
.. : 769230769, 769230769230769230769,769230769230769230769230769230769.
: 1538461.
, , full reptend prime, . P = 7 2 , full reptend, 3 5 — .
7 . 12, . , 17 19, 59 61.
, full reptend n-th repntend level . P N .
1/P:
s — , 1/P:
full reptend prime , 1 . :)
length , s, . length .
r , 1/P. 1/P P-1, full reptend , P-1.
, , , . P= 7, .. full reptend .
: [3, 2, 6, 4, 5, 1]. . base mod P. , :
:
, : P— ; base — ; length — , .
P = 7 c s, :
s = 1, 0,(142857), .. length = 1. r = 3, , length = 1.
3 10. :
2 100. s = 14, 0,(142857), .. length = 2. r = 2, , length = 2. , , , .
length 1:
, s :
s - , . . .
, , , s P N — .
P = 17:
89 . 1/89 = 0,0112359.. — , . , :
, — 109.
1/89 : (-1)n+1. , , .
, , .
-
s , , .
, P = 7, 142857, 1428571. , , 1/P, 1/P .. P-1/P. , , 71428571.
, . , . , , , , , .
, s, , , , . - .
P = 7. 1/P, P-1/P, , s : 2, 5, 7, 71, 571, 2857, 28571.
, - .
- P N. , full reptend prime .
,
, . P N, . , P, , .
- :
, P, , . , 142857. 40 5SMYBH ( 5, 28, 22, 34, 11, 17).
, , H5SMYBH 40 , , : 70217142857.
, . , , , .
P=7 N=10:
1) 1428571
2) 71428571
3) 7142857142857
4) 571428571428571
5) 1428571428571428571428571
6) 28571428571428571428571428571
7) 7142857142857142857142857142857
8) 2857142857142857142857142857142857
9) 42857142857142857142857142857142857142857
40 :
1) MCYB
2) Ra2YB
3) 13NYIMYBH
4) 277Sb5SMYB
5) 1D8TJS2CYBH5SMYB
6) GP98QAT0SMYBH5SMYB
7) 2NbRO471EIMYBH5SMYBH
8) PdGa11UDOPSMYBH5SMYBH
9) 3WAEQ3OR61AQVH5SMYBH5SMYBH
P=7 N=10 :
1) H5SMYBH
2) - 77 , 5SMYBH, B:
5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYBH5SMYB
:
1) 70217142857
– 12 , 123 .
2) 3262280440470765442418939358741703168874849426...
...28571428571428571428571428571428571428571428571428571428571428571428571428571
- , .
,
P = 7 N = 10. :
Ns(i) = N + 3*N*i + ((i + 1) % 2) * i*N*4
i — . i = 0 , full reptend prime. .
, , .
N = 3, 10, 17, 31, 38, 59:
Ns(i) = N + 3*N*i + ((i + 1) % 2) * i*N
N = 5, 19, 26, 33, 47, 61:
Ns(i) = N + N*i + ((i + 1) % 2) * i*5*N
N = 12:
Ns(i) = N + N*i + ((i + 1) % 2) * i*5*N
N = 40 , N = 10.
N = 24, N = 12.
, , N.
, 40 , . , , - , 40, , 40 .
12 24 . , , , 12.
, , , full reptend.
, , , 40 10 .
P = 5, . P = 17 , , base, base*2, base*4, .
, , .
, , . . .
, , . . : , , , , .
#1: 40 . 1/740=0.(5SMYBH)40, H5SMYBH40, 70217142857. 7142857, 40 .
#2: 10 . 571428571428571. 40 1D8TJS2CYBH5SMYB40. , YBH5SMYB , .
,
, . . , .
, . , .
, ,
,
!
, full reptend prime .
. , , github. .
, full reptend prime. .
, , , .
, 2019 , \ .
, , arxiv.org – . , . – :
, arxiv ? ? 6- , .
Thank you all for your attention! I hope my first article was not tedious, there are a few more ahead and not all of them will be about mathematics.