Mutations of a fractal broth called "Multiverse" - about the inflationary model of Andrei Linde and Alan Guth

Abstract: the material describes the problems of the model of a hot Universe, considers the inflationary models of Alan Gut and Andrei Linde, as a result of which a conclusion is made about the feasibility of the hypothesis of the Multiverse, its meaning and self-similarity.





Foreword

When choosing a topic for this material, I decided that it was time for me to talk with my readers about mathematics, as it was in the article about Fermat's Last Theorem, and on the advice of a professor I know, my eyes fell on fractals. A fractal is a set that has the property of self-similarity. When scaling, any part of a fractal represents the fractal itself. As an example of a fractal, I will cite the Cantor set, which was described in 1883 by Georg Cantor. The set begins with a segment of a certain length, and each subsequent segment is a third of the previous one, and there are two such segments in the "line", and they are separated by a distance of the same segment. No matter how much we scale this set, it will always resemble its original appearance. It looks like this:





Visualization of the Cantor set
Visualization of the Cantor set

— , . 1904 . (1/3), . , 1/3. , :





Von Koch set rendering

, , — . , , . - . , , .





, . . , . — , . , . , , , :





, ; , 32; , 33 . , , ? , 4 ! , :





\ log_34 \ approx 1.262

, , 3Blue1Brown, — , , . , 1,3, — 1,05 1,7. :





Fractal sheet modeling

, — , -, 1990- . . , 2,66:





Romanesco cabbage

. , , :





The Great Egyptian Museum, whose architecture is inspired by the Sierpinski triangle
,

, : « », , , .





1981 . . :





«, , ».





, .. , , «Inflationary universe: A possible solution to the horizon and flatness problems», Physical Review 15 1981 . SLAC , - MIT. , :





  1. (CMB) , ;





  2. , (.. ).





Winners of the 2014 Kavli Prize in Astrophysics.  From left to right: Alexey Starobinsky, Andrey Linde and Alan Gut.  Credit: Scanpix
2014 . : , . Credit: Scanpix

? , , . , . : ( 1016 ). 10-36 . — . , , . , , , , , ( , .. , , ). — , , (-1ε/3). . -, . , (10-36 ) , . , .





, , , ( - ). , , . : 10-35 . , , . .





?

( ) — , . , — , , , , .





, , , , , , — .





? , . :





, .





. , , , , . « » .





()

« , , . . , . , . , , . . , . , , . , ? — ? , ! , , , . - . , — : , , . , , — . , , . , , — , . , — . , . , «» . : — , , , , , — . : . . , , , , ».





Inflaton tunneling options: a) in the modern inflationary model (according to Linde), b) in the work of Guth
: ) ( ), )

?

, , «» , ! , , , , , !





Credit: Smithonian Magazine
Credit: Smithonian Magazine

( , ), , t, , . «» - — , , ... . , , — . , -. , , .





, , , — . : - — H2O, : , . , , , — . , , , .





— , , .





«, «-», , , ,   ?   ,   ... ?  :  2000  , . ? 100  , -- (w-) — . ? , . 2 , . 2 , . 100 , . , , -, .





, .     , , , , ,  — ,   , , . , ,  ,   :   ,   , 10   (101000) ,   , ...   , ,  , - , ,   , ,   .   , , , .  — , . , ,  — , .   , . ».









:





  • .. « » ;





  • ();





  • ();





  • .. «The Self-Reproducing Inflationary Universe Scientific American» , 1994 ()





  • ()





  • , ()





  • 3Blue1Brown ()





I also run a telegram channel where you can get acquainted with my activities, pressing issues of cosmology and my old articles ( link ).








All Articles