Let's assume that this violation is possible. How to identify it?
We have at our disposal records from surveillance cameras of the employee's workplace and a log of operations.
We will look for all the moments on the record where the client was absent. The neural network MobileNet and CSRT Tracker from the opencv library will help us with this. And for convenience, also Tesseract-OCR.
To find a person in the frame, we will use the MobileNet neural network. This network allows you to detect and localize 20 types of objects in the image. For it to work, you need to download two files: architecture and weights. These files can be found in the Github repository .
Before writing the code, we need to install the cv2 computer vision library and the pytesseract package for processing text on images.
!pip install opencv-python !pip install pytesseract
For pytesseract to work, you must first download the Tesseract-OCR distribution from the official website and install it.
Getting started preparing for video processing
We import the packages and write the path to the Tesseract-OCR folder in the local environment:
import os
video_path = ... #
tesseract_path = ... # Tesseract
os.environ["PATH"] += os.pathsep + tesseract_path
import pytesseract
import cv2
import imutils
import pandas as pd
import datetime as dt
, . , / :
df = pd.DataFrame(columns = ['', ' '])
work_place = () #,
date = None #
tracked = False #
, . , :
prototxt = 'MobileNetSSD_deploy.prototxt' #
weights = 'MobileNetSSD_deploy.caffemodel' #
20 , :
classNames = {0: 'background',
1: 'aeroplane',
2: 'bicycle',
3: 'bird',
4: 'boat',
5: 'bottle',
6: 'bus',
7: 'car',
8: 'cat',
9: 'chair',
10: 'cow',
11: 'diningtable',
12: 'dog',
13: 'horse',
14: 'motorbike',
15: 'person',
16: 'pottedplant',
17: 'sheep',
18: 'sofa',
19: 'train',
20: 'tvmonitor'}
, .
thr = 0.1 #
:
net = cv2.dnn.readNetFromCaffe(prototxt, weights) #
cv2.VideoCapture, :
cap = cv2.VideoCapture(video_path)
, .read(), . , . . :
%%time
cap = cv2.VideoCapture(video_path)
total_frame = 0
while True:
success, frame = cap.read()
if success:
total_frame += 1
else:
break
video_length = ... #
fps = round(total_frame / video_length)
fps
, . 100- 2 .
, , , . , , .
while cap.isOpened():
ret, frame = cap.read()
if ret:
frame = imutils.resize(frame, width=1200) # ,
# ,
if len(work_place) == 0:
cv2.putText(frame, 'Set the client\'s location', (0, 90), cv2.FONT_HERSHEY_SIMPLEX,
2, (0,255,0), 2)
work_place = cv2.selectROI('frame', frame, fromCenter=False, showCrosshair=True)
x, y, w, h = [int(coord) for coord in work_place]
#
if not date:
try:
cv2.putText(frame, 'Set the date, (0, 160), cv2.FONT_HERSHEY_SIMPLEX,
2, (0,255,0), 2)
date = cv2.selectROI('frame', frame, fromCenter=False, showCrosshair=True)
date_x, date_y, date_w, date_h = [int(coord) for coord in date]
date_ = frame[date_y : date_y+date_h, date_x : date_x+date_w]
date_ = cv2.cvtColor(date_, cv2.COLOR_BGR2GRAY) #
#date_ = cv2.threshold(date_, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
date_ = cv2.threshold(date_, 180, 255, 0)[1] #
date = pytesseract.image_to_string(date_)
date = dt.datetime.strptime(date, '%Y-%m-%d %H:%M:%S')
except:
print(' , -- ::')
date_ = input()
date = dt.datetime.strptime(date_, '%Y-%m-%d %H:%M:%S')
if cap.get(1) % fps == 0:
date += dt.timedelta(seconds = 1)
if not tracked or (cap.get(1) % (fps * 30) == 0):
#
frame_resized = cv2.resize(frame, (300, 300)) # 300 300
blob = cv2.dnn.blobFromImage(frame_resized, 0.007843,
(300,300), (127.5, 127.5, 127.5), False)
#
net.setInput(blob)
detections = net.forward()
#[0, 0, object, [0, class_id, confidence, xLeftBottom, yLeftBottom, xRightTop, yRightTop]]
#
cols = frame_resized.shape[1]
rows = frame_resized.shape[0]
#
for obj in detections[0,0, :, :]:
confidence = obj[2]
if confidence > thr:
class_id = int(obj[1])
if class_id == 15:
xLeftBottom = int(obj[3] * cols)
yLeftBottom = int(obj[4] * rows)
xRightTop = int(obj[5] * cols)
yRightTop = int(obj[6] * rows)
#
heightFactor = frame.shape[0] / 300.0
widthFactor = frame.shape[1] / 300.0
#
xLeftBottom = int(widthFactor * xLeftBottom)
yLeftBottom = int(heightFactor * yLeftBottom)
xRightTop = int(widthFactor * xRightTop)
yRightTop = int(heightFactor * yRightTop)
#
xCenter = xLeftBottom + (xRightTop - xLeftBottom)/2
yCenter = yLeftBottom + (yRightTop - yLeftBottom)/2
#
if xCenter < x + w and yCenter < y + h and xCenter > x and yCenter > y:
tracker = cv2.TrackerCSRT_create()
tracker.init(frame, (xLeftBottom, yLeftBottom, xRightTop-xLeftBottom, yRightTop-yLeftBottom))
tracked = True
cv2.rectangle(frame, (xLeftBottom,yLeftBottom), (xRightTop,yRightTop), (0,255,0), 3, 1)
break
else:
tracked = False
else:
_, bbox = tracker.update(frame)
X, Y, W, H = [int(coord) for coord in bbox]
xCenter = X + W/2
yCenter = Y + H/2
if xCenter < x + w and yCenter < y + h and xCenter > x and yCenter > y:
tracked = True
cv2.rectangle(frame, (X,Y), (X + W, Y + H), (255,255,0), 3, 1)
else:
tracked = False
cv2.imshow('frame', frame)
df.loc[cap.get(1), :] = [date, tracked]
print(cap.get(1), date, tracked) # , /
if cv2.waitKey(1) == 27: #ESC
break
else:
break
cap.release()
cv2.destroyAllWindows()
.read() : , , โ . , , , .
. , ยซ-- ::ยป. , : , . date
.
Tesseract-
, . , , .
.get() 1 , , fps
, date
. tesseract, , .
: cv2.resize() cv2.dnn.blobFromImage(). , . , detections
. , 20 .
, 15. , , tracked
True . tracked
date
df
.
, . , tracked
True False, .
. , , . .
, / . , , . , .
df_ = df.groupby('', as_index=False).agg(max)
df_.to_excel('output.xlsx', index=False)
, :
. , . opencv. , , .
. .
. , , . ยซยป , .
The first and second problem can be solved by trackers based on deep learning. For example, a tracker GOTURN
. This tracker is implemented in the library opencv
, but for its operation you need to download additional files. You can also use the popular tracker Re3
or the recently introduced tracker AcurusTrack
. The third problem can be solved by replacing the neural network and / or retraining it on seated people.