Scabies mites. Past present Future. Part one

Written by Larry G. Arlian, Marjorie, S. Morgan 





Translation and adaptation: Efimov S.T.









This translation is dedicated to readers who really wanted to know about this disease.





 





annotation





Scabies is one of the earliest human diseases, the causes of which have been known from the very beginning. This disease is caused by the itch mite  Sarcoptes scabiei , which creates passages and burrows in the epidermis of the skin of humans and many other mammals. Previously, this mite was known under the specific name Acarus scabiei  (DeGeer, 1778), but it received its current name since the founding of the genus  Sarcoptes (Latreille 1802) in 1802. Research over the past 40 years has greatly expanded our understanding of the biology of this tick species, as expressed in the interaction of the parasite with the host and in the mechanisms that this tick uses to evade the host's defense. This review highlights some of the major advances in our knowledge of biology, the genome, the set of proteins in the parasite's body produced by the tick at a given time ( proteome ), and the immunomodulatory abilities of ticks that provide the basis for disease control. Advances in the development of a blood diagnostic test to detect scabies infection and the emergence of a vaccine to protect susceptible populations from infection, or at least limit transmission of the disease, are also presented.





Origin.





 Sarcoptes scabiei, , .   ,  S. scabiei  - .  , , . , IT . , , https://habr.com/ru/post/537708/.





.                                                                        





,   [ 1 ] [ 2 ] 1900- .  , , (1200 . ..) [ 1 ].  [ 2 ], -  Acarus scabiei ( Sarcoptes scabiei) , 1687 . , .  - , , , .





—  , .





 









 Sarcoptes scabiei     Acarus   Acarus scabiei DeGeer, 1778.  S. scabieiSarcoptes scabiei  Sarcoptoidea Sarcoptidae .   S. scabiei  Acariformes, Sarcoptiformes, Oribatida, Desmonomata Astigmata (  Dermatophagoides farinae , D. pteronyssinus  Euroglyphus maynei ) [ 3 ].





Sarcoptidae (Sarcoptinae, Teinocoptinae Diabolicoptinae), 16 118 , [ 4 , 5 ].  Sarcoptinae  Sarcoptes (1 ), Prosarcoptes (3 ), Trixacarus (3 )  Kutzerocoptes (1 ). Sarcoptes,  Trixacarus caviae  , . Trixacarus caviae - , ,  Sarcoptes [ 6 ]. Trixacarus caviae , [ 7 ].  , Sarcoptes    T. caviae  .    T. caviae ,  S. scabiei  ,  T. caviae  ,  S. scabiei,  [ 7 ].  – , () () ().  sci l1 ,  d1 T. Caviae, S. scabiei (. 1).





1





Scanning electron micrographs of female Sarcoptes scabiei var.  hominis (a), S. scabiei var.  suis (b) and S. scabiei var.  canis (c, d), on which dorsal spines, rough cuticular grooves and internal lamellar scapular setae (sci), dorsal setae (d1) and dorsal scutellum (DS) are visible.  Ruler scaling: a, 100 microns;  b, 10 μm;  c, 100 μm;  d, 10 μm
 Sarcoptes scabiei var. hominis (), S. scabiei var. suis (b)  S. scabiei var. canis (c, d), , (sci), (d1) (DS).  : , 100 ; , 10 ; c, 100 ; d, 10









 S. scabiei  [ 2 , 4 , 5 , 6 ]. , S. scabiei  (), (. 1 ).  (l) (d) , - .   sci, l1  d1  (. 1).





(. 1 , 2 ).  III IV - , I II , ( ), (. 2 ). .  IV , .  (III IV III ) .  (. 2).  I, II, III IV .  I, II III IV.





. 2





    Sarcoptes scabiei var. canis. a  I  II      (c)    (e),   .   III  IV    ()    (S)  . c c (  )   I. : , 10 ; , 10 ; c, 10
 Sarcoptes scabiei var. canis. a  I II (c) (e), .   III IV () (S) . c c ( ) I. : , 10 ; , 10 ; c, 10





(capitalum) (. 2c ).  / , ») (. 3 ).  5,62 ± 1,25 2,8 ± 0,86 [ 8 ].  : 1,49 ± 0,59 0,39 ± 0,16 [ 8 ].





. 3





   ( )  Sarcoptes scabiei var. canis     ,       (a)    (.)  . : 10
( )  Sarcoptes scabiei var. canis  , (a) (.)  . : 10









 S. scabiei var. hominis  .  ( ) , .  , ( , , ) , -, .  , var. canis  var. Hominis   .





(-), , . / . 30 . / [ 9].  , , , ( / ). 





, , .  , ( « »). , , , , , .  , , (var. Suis ) - [ 10 ].









 S. scabiei  , , , .  .   S. scabiei var. hominis.  12 17 [ 11 ], 17 21 [ 12 ], 7 10 [ 13 ], 9 15 [ 14 ] 15 [ 2]. ].  , 40–50 26–40 [ 2 ].





 S. scabiei var. In vivo . canis  , 10 13 [ 15 ].  50–53 .  3–4 , 2–3 .  10–15 var. suis  [ 16 ].





 S. scabiei . , , in vivo ( , ; in vitro , ).  , , , .









 Sarcoptes scabiei  , , , .  , .  , , S. Scabiei .  , , . Sarcoptes scabiei var. hominis  [ 17 ].  , .





, varcanis , , , ( 1 , ) , [ 18 ].  68% 4,9 (1,93 ) , 100% 4,2 (1,65 ).  20% 11,2 (4,41 ).  , .  , , , / CO 2  .





, [ 18].  83% 5,6 (2,2 ).  ( 50% ) , , (2,5 = 1 ) .  6,5 (4,41 ) 38% , 5% 32 °C 57% , , , , , .  , , , CO2, CO2 .





Mellanby et al. [ 19 ] ,  S. scabiei var. hominis,  20 ° C 30 ° C, . Sarcoptes scabiei var. hominis,  24 ° C, .  24 ° C.





, (, ) .









  .  . Sarcoptes scabiei var. hominis  ( ) , [ 19 ]. , S. scabiei var. canis  63 (678 /  2 ) 100 (1076 /  2 ) ( 1).  , - , , , .





1  Sarcoptes scabiei var. canis  /









.  [ 11 ], , 272 4 . - .  .





 S. scabiei  .  Arlian et al. [ 20 ] ,  S. scabiei var. canis  15 ° C (59 ° F) (RH) 75% (. 4 ).  25 ° C (77 ° F) 1-2 RH (. 4).).  , .  , .  - ( ).  20 ° C .





. 4





The observed time to 100% mortality in the tested female populations of S. scabiei var.  canis that have been exposed to certain temperature fluctuations with relative humidity (RH).  The number of ticks in each test group ranged from 8 to 26. Data from [20]
100%  S. scabiei var. canis,   (RH).  8 26. [ 20 ]





S. scabiei var. hominis  19 10 ° C 97%, 8 10 ° C 25% [ 20 ]. Sarcoptes scabiei var. hominis , 12- 4 ° C 10 ° C 95% (21 ° C 45% RH) 4 , [ 20 ].





, , .  varcanis  -25 ° C 50% 1,5 100% .  1 23% , [ 20 ]. , -15 ° C -17 ° C, ..   .





Mellanby et al. [ 19 ] . 10 30 0–90%.  49 ° C (120 ° F) 10 47,5 ° C (117,5 ° F) 30 .  - , 84,7, 30,5, 6,8, 1,7 0% 1, 2, 3, 4 5 , , 21,0–25,5 ° C 90%.  24–25 ° C 30% 63,5, 6,8 0% 1, 2 3 , .  61, 52, 35, 30 26% 5, 6, 7, 9 11 90%, 14 . , 4 2% 2 4 30%.  , .  .  2 0 ° C, 28,6% 8 .





.





























c .
  1. 1.





    Roncalli RA. The history of scabies in veterinary and human medicine from biblical to modern times. Vet Parasitol. 1987;25(2):193–8.





    CAS PubMed Article Google Scholar 





  2. 2.





    Friedman R. The story of scabies. New York: Froben Press; 1947.





    Google Scholar 





  3. 3.





    Zhang ZQ. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa. 2011;3148:237.





    Google Scholar 





  4. 4.





    Bochkov AV. A review of mammal-associated Psoroptidia (Acariformes: Astigmata). Acarina. 2010;18:99–260.





    Google Scholar 





  5. 5.





    Klompen H. Phylogenetic relationships in the mite family Sarcoptidae (Acari: Astigmata). Misc Publ Univ Michigan Mus Zool. 1992;180:1–155.





    Google Scholar 





  6. 6.





    Fain A. Etude de la variabilite de Sarcoptes scabiei avec une revision des Sarcoptidae. Acta Zool Pathol Antverp. 1968;47(1):1–196.





    Google Scholar 





  7. 7.





    Kummel BA, Estes SA, Arlian LG. Trixacarus caviae infestation of guinea pigs. J Am Vet Med Assoc. 1980;177(9):903–8.





    CAS PubMed Google Scholar 





  8. 8.





    Arlian LG, Runyan RA, Vyszenski-Moher DL. Water balance and nutrient procurement of Sarcoptes scabiei var. canis (Acari: Sarcoptidae). J Med Entomol. 1988;25(1):64–8.





    CAS PubMed Article Google Scholar 





  9. 9.





    Arlian LG, Runyan RA, Estes SA. Cross infestivity of Sarcoptes scabiei. J Am Acad Dermatol. 1984;10(6):979–86.





    CAS PubMed Article Google Scholar 





  10. 10.





    Mounsey K, Ho MF, Kelly A, Willis C, Pasay C, Kemp DJ, et al. A tractable experimental model for study of human and animal scabies. PLoS Negl Trop Dis. 2010;4(7):e756.





    PubMed PubMed Central Article CAS Google Scholar 





  11. 11.





    Mellanby K. The development of symptoms, parasitic infection and immunity in human scabies. Parasitology. 1944;35(4):197.





    Article Google Scholar 





  12. 12.





    Heilesen B. Studies on Acarus scabiei and scabies. Rosenkilde & Bagger: Copenhagen; 1946.





    Google Scholar 





  13. 13.





    Munro JW. Report of scabies investigation. J R Army Med Corp. 1919;33:1–41.





    Google Scholar 





  14. 14.





    Van Neste D, Mrena E, Marchal G. Life cycle of scabies mite (Sarcoptes scabiei¨C11Cvar.¨C12Chominis) studied by scanning electron microscopy (author's transl). Ann Dermatol Venereol. 1981;108(4):355–61.





    PubMed Google Scholar 





  15. 15.





    Arlian LG, Vyszenski-Moher DL. Life cycle of¨C13CSarcoptes scabiei¨C14Cvar.¨C15Ccanis. J Parasitol. 1988;74(3):427–30.





    CAS PubMed Article Google Scholar 





  16. 16.





    Ljunggren EL. Molecular analysis of¨C16CSarcoptes scabiei. Uppsala: Dept. of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences; 2005.





    Google Scholar 





  17. 17.





    Arlian LG, Estes SA, Vyszenski-Moher DL. Prevalence of¨C17CSarcoptes scabiei¨C18Cin the homes and nursing homes of scabietic patients. J Am Acad Dermatol. 1988;19(5,Pt1):806–11.





    CAS PubMed Article Google Scholar 





  18. 18.





    Arlian LG, Runyan RA, Sorlie LB, Estes SA. Host-seeking behavior of¨C19CSarcoptes scabiei. J Am Acad Dermatol. 1984;11(4,Pt1):594–8.





    CAS PubMed Article Google Scholar 





  19. 19.





    Mellanby K, Johnson CG, Bartley WC, Brown P. Experiments on the survival and behavior of the itch mite¨C20CSarcoptes scabiei¨C21CDeG var.¨C22Chominis. Bull Entomol Res. 1942;33:267–71.





  20. 20.





    Arlian LG, Runyan RA, Achar S, Estes SA. Survival and infectivity of¨C23CSarcoptes scabiei¨C24Cvar.¨C25Ccanis¨C26Cand var.¨C27Chominis. J Am Acad Dermatol. 1984;11(2,Pt1):210–5.





    CAS PubMed Article Google Scholar 





  21. 21.





    Wharton GW, Richards AG. Water vapor exchange kinetics in insects and acarines. Annu Rev Entomol. 1978;23:309–28.





    CAS Article Google Scholar 





  22. 22.





    Arlian LG, Veselica MM. Reevaluation of the humidity requirements of the house dust mite¨C28CDermatophagoides farinae¨C29C(Acari: Pyroglyphidae). J Med Entomol. 1981;18(4):351–2.





    Article Google Scholar 





  23. 23.





    Arlian LG. Water balance and humidity requirements of house dust mites. Exp Appl Acarol. 1992;16:15–35.





    CAS PubMed Article Google Scholar 





  24. 24.





    Van Neste D, Lachapelle JM. Host-parasite relationships in hyperkeratotic (Norwegian) scabies: pathological and immunological findings. Br J Dermatol. 1981;105(6):667–78.





    PubMed Article Google Scholar 





  25. 25.





    Van Neste D. Intraepidermal localization of scabies mites overlooked? J Am Acad Dermatol. 1984;10(4):676–7.





    PubMed Article Google Scholar 





  26. 26.





    Estes SA, Kummel B, Arlian L. Experimental canine scabies in humans. J Am Acad Dermatol. 1983;9(3):397–401.





    CAS PubMed Article Google Scholar 





  27. 27.





    Rapp CM, Morgan MS, Arlian LG. Presence of host immunoglobulin in the gut of¨C30CSarcoptes scabiei¨C31C(Acari: Sarcoptidae). J Med Entomol. 2006;43(3):539–42.





    CAS PubMed Article Google Scholar 





  28. 28.





    Morgan MS, Arlian LG. Enzymatic activity in extracts of allergy-causing astigmatid mites. J Med Entomol. 2006;43(6):1200–7.





    CAS PubMed Article Google Scholar 





  29. 29.





    Arlian LG, Vyszenski-Moher DL. Response of¨C32CSarcoptes scabiei¨C33Cvar.¨C34Ccanis¨C35C(Acari: Sarcoptidae) to lipids of mammalian skin. J Med Entomol. 1995;32(1):34–41.





    CAS PubMed Article Google Scholar 





  30. 30.





    Entrekin DL, Oliver JH Jr. Aggregation of the chicken mite,¨C36CDermanyssus gallinae¨C37C(Acari: Dermanyssidae). J Med Entomol. 1982;19(6):671–8.





    CAS PubMed Article Google Scholar 





  31. 31.





    Otieno DA, Hassanali A, Obenchain FA, Sternberg AG, R. Identification of guanine as an assembly pheromone of ticks. Insect Sci Appl. 1985;6(3):667–70.





    CAS Google Scholar 





  32. 32.





    Sonenshine DE. Tick pheremones. In: Anonymous biology of ticks. New York: Oxford University Press; 1991. p. 331–69.





    Google Scholar 





  33. 33.





    Sonenshine DE, Silverstein RM, West JR. Occurrence of sex attractant pheromone, 2,6-dichlorophenol, in relation to age and feeding in American dog tick,¨C38CDermacentor variabilis¨C39C(Say) (Acari: Ixodidae). J Chem Ecol. 1984;10(1):95–100.





  34. 34.





    Sonenshine DE. Pheromones and other semiochemicals of the acari. Annu Rev Entomol. 1985;30:1–28.





    CAS PubMed Article Google Scholar 





  35. 35.





    Arlian LG, Vyszenski-Moher DL. Responses of¨C40CSarcoptes scabiei¨C41C(Acari: Sarcoptidae) to nitrogenous waste and phenolic compounds. J Med Entomol. 1996;33(2):236–43.





    CAS PubMed Article Google Scholar 





  36. 36.





    Arlian LG, Morgan MS, Neal JS. Modulation of cytokine expression in human keratinocytes and fibroblasts by extracts of scabies mites. Am J Trop Med Hyg. 2003;69(6):652–6.





    PubMed Google Scholar 





  37. 37.





    Mullins JS, Arlian LG, Morgan MS. Extracts of¨C42CSarcoptes scabiei¨C43Cde Geer downmodulate secretion of IL-8 by skin keratinocytes and fibroblasts and of GM-CSF by fibroblasts in the presence of proinflammatory cytokines. J Med Entomol. 2009;46(4):845–51.





    CAS PubMed PubMed Central Article Google Scholar 





  38. 38.





    Hajnicka V, Kocakova P, Slavikova M, Slovak M, Gasperik J, Fuchsberger N, et al. Anti-interleukin-8 activity of tick salivary gland extracts. Parasite Immunol. 2001;23(9):483–9.





    CAS PubMed Article Google Scholar 





  39. 39.





    Deruaz M, Frauenschuh A, Alessandri AL, Dias JM, Coelho FM, Russo RC, et al. Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med. 2008;205(9):2019–31.





    CAS PubMed PubMed Central Article Google Scholar 





  40. 40.





    Vancova I, Hajnicka V, Slovak M, Kocakova P, Paesen GC, Nuttall PA. Evasin-3-like anti-chemokine activity in salivary gland extracts of ixodid ticks during blood-feeding: a new target for tick control. Parasite Immunol. 2010;32(6):460–3.





    CAS PubMed Article Google Scholar 





  41. 41.





    Morgan MS, Arlian LG. Response of human skin equivalents to¨C44CSarcoptes scabiei. J Med Entomol. 2010;47:877–83.





    CAS PubMed PubMed Central Article Google Scholar 





  42. 42.





    Morgan MS, Arlian LG, Markey MP.¨C45CSarcoptes scabiei¨C46Cmites modulate gene expression in human skin equivalents. PLoS One. 2013;8(8):e71143.





    CAS PubMed PubMed Central Article Google Scholar 





  43. 43.





    Elder BL, Arlian LG, Morgan MS.¨C47CSarcoptes scabiei¨C48C(Acari: Sarcoptidae) mite extract modulates expression of cytokines and adhesion molecules by human dermal microvascular endothelial cells. J Med Entomol. 2006;43(5):910–5.





    CAS PubMed PubMed Central Google Scholar 





  44. 44.





    Elder BL, Arlian LG, Morgan MS. Modulation of human dermal microvascular endothelial cells by¨C49CSarcoptes scabiei¨C50Cin combination with proinflammatory cytokines, histamine, and lipid-derived biologic mediators. Cytokine. 2009;47(2):103–11.





    CAS PubMed PubMed Central Article Google Scholar 





  45. 45.





    Arlian LG, Morgan MS, Neal JS. Extracts of scabies mites (Sarcoptidae:¨C51CSarcoptes scabiei) modulate cytokine expression by human peripheral blood mononuclear cells and dendritic cells. J Med Entomol. 2004;41(1):69–73.





    CAS PubMed Article Google Scholar 





  46. 46.





    Walton SF, Pizzutto S, Slender A, Viberg L, Holt D, Hales BJ, et al. Increased allergic immune response to¨C52CSarcoptes scabiei¨C53Cantigens in crusted¨C54Cversus¨C55Cordinary scabies. Clin Vaccine Immunol. 2010;17(9):1428–38.





    CAS PubMed PubMed Central Article Google Scholar 





  47. 47.





    Arlian LG, Morgan MS, Paul CC. Evidence that scabies mites (Acari: Sarcoptidae) influence production of interleukin-10 and the function of T-regulatory cells (Tr1) in humans. J Med Entomol. 2006;43(2):283–7.





    CAS PubMed Google Scholar 





  48. 48.





    Holt DC, Fischer K, Allen GE, Wilson D, Wilson P, Slade R, et al. Mechanisms for a novel immune evasion strategy in the scabies mite¨C56CSarcoptes scabiei: a multigene family of inactivated serine proteases. J Invest Dermatol. 2003;121(6):1419–24.





    CAS PubMed Article Google Scholar 





  49. 49.





    Bergstrom FC, Reynolds S, Johnstone M, Pike RN, Buckle AM, Kemp DJ, et al. Scabies mite inactivated serine protease paralogs inhibit the human complement system. J Immunol. 2009;182(12):7809–17.





    PubMed Article Google Scholar 





  50. 50.





    Fischer K, Langendorf CG, Irving JA, Reynolds S, Willis C, Beckham S, et al. Structural mechanisms of inactivation in scabies mite serine protease paralogues. J Mol Biol. 2009;390(4):635–45.





    CAS PubMed Article Google Scholar 





  51. 51.





    Mika A, Reynolds SL, Mohlin FC, Willis C, Swe PM, Pickering DA, et al. Novel scabies mite serpins inhibit the three pathways of the human complement system. PLoS One. 2012;7(7):e40489.





    CAS PubMed PubMed Central Article Google Scholar 





  52. 52.





    Mika A, Reynolds SL, Pickering D, McMillan D, Sriprakash KS, Kemp DJ, et al. Complement inhibitors from scabies mites promote streptococcal growth - a novel mechanism in infected epidermis? PLoS Negl Trop Dis. 2012;6(7):e1563.





    CAS PubMed PubMed Central Article Google Scholar 





  53. 53.





    Swe PM, Fischer K. A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth. PLoS Negl Trop Dis. 2014;8(6):e2928.





    PubMed PubMed Central Article Google Scholar 





  54. 54.





    Swe PM, Reynolds SL, Fischer K. Parasitic scabies mites and associated bacteria joining forces against host complement defence. Parasite Immunol. 2014;36((1)1):585–93.