Introduction
. : " ", "", "Russian doomer music" . , , - , . , . , - ? .
import os
import vk_api
import urllib.request
def captcha_handler(captcha):
print (f"url: {captcha.get_url()}\n")
key = input("Enter captcha code: ")
return captcha.try_again(key)
def auth_handler():
code = input("Enter 2FA code: ")
return (code, True)
def save_post_pictures(post, imgfolder, imres):
pictures = []
if not os.path.exists(imgfolder):
os.makedirs(imgfolder)
for attachment in post['attachments']:
if attachment['type'] == 'photo':
photo = attachment['photo']
for size in photo['sizes']:
if size['type'] == imres:
url = size['url']
filename = ('_'.join(url.split('/')[-2:])).split('?')[0]
urllib.request.urlretrieve(url, os.path.join(imgfolder, filename))
pictures.append(filename)
return pictures
phone = input("phone ")
password = input("password ")
domain = 'plattenbauten' # vk.com/plattenbauten
sess = vk_api.VkApi(phone, password, captcha_handler=captcha_handler, auth_handler=auth_handler)
sess.auth()
api = sess.get_api()
posts = api.wall.get(domain=domain, count=1)['items']
save_post_pictures(posts[0], domain, 'z') # https://vk.com/dev/photo_sizes - z
100 . , . EfficientDet ( , , .., ), - NLP NLTK - . 10 .
Stylegan2 . (, , ) . , - Google Colab ( ).
- .tfrecord ( readme). , tfrecord- , Colab . , , 10 10241024, .tfrecord . , stylegan2 .tfrecord-, .
Google Colab 10241024. , " ".
- . - ( mubert). .
, . , ( 512) ( , ), . ( ) , . generate.py , , , .
With the advent of architectures like stylegan, generative art is gaining momentum - some have even successfully sold generative paintings for hundreds of dollars without writing a single line of code. I hope this article will lead someone else to the idea of ββusing neural networks in art, especially since services like Colab significantly reduce the entry threshold and costs to get interesting results.