Review of technologies for constructing flat scanning antennas for ground terminals of satellite communications

The review presents the directions of research and development work that are currently being actively carried out in many countries in order to search for technologies for creating flat antennas with beam scanning for terrestrial satellite communication terminals. Among the numerous solutions, the article highlights those that, in the opinion of the authors, are the most promising. 





In our article we review and suggest categorization of various engineering approaches used to develop satellite communication ground terminal flat-panel scanning antenna. Among many solutions we highlight the several of the most promising technologies and concepts.









In the last decade, research and development and development projects have been actively pursued in many countries of the world, the purpose of which is to find technical solutions for creating inexpensive flat-panel antennas (FPA). Today, the main driver for this is the increasing number of planned scenarios for the provision of broadband access (BBA) services on mobile objects.





Various FPA implementations have been known for a long time, but until now they belonged to the class of equipment not intended for mass use. The lack of low-cost user terminals with a flat scanning antenna on the market is often referred to as a problem that limits the commercialization of new low-orbit satellite broadband systems, in the creation of which billions of dollars are invested, therefore a large number of engineering and scientific teams around the world are engaged in work in this direction.





In the process of solving the problem of achieving FPA parameters acceptable for the mass market, studies are being carried out to improve their radio technical and operational characteristics and, most importantly, to reduce the cost of FPA in production. As a result, many new approaches to the construction of such antennas appear. In the article, we offer a classification of antenna solutions present on the market, an overview of existing FPA construction technologies and an analysis of their prospects in the satellite broadband market.





10 . , . . , . 





6 FPA.





  • (RF ASIC);





  • ;





  • ;





  • ;





  • ;





  • .





(). – – . – () – . . .





An example of a PAR cloth
An example of an APV blade

, . - , . . , . .





.





(RF ASIC)

: .





RF ASIC ( β€œbeamformer”) – , , . , . RF ASIC , - . – – (, pin- ).





Antenna example for RF ASIC
RF ASIC
Typical RF ASIC structure
RF ASIC

-: Anokiwave [1], IDT Renesas [2], Analog Devices [3], Xphased [4], HiSkySat [5].





: , , .





: RF ASIC, , G/T. 





: Starlink RF ASIC [6]. 









: .





, ( ) ( ). , . (), , . , . FPA .





A prototype of a phased array on liquid crystals from ALCAN Systems.
ALCAN Systems.
Alcan Systems HEADLIGHT cell design
Alcan Systems

-: ALCAN Systems [7], Wafer [8].





: , .





: RF ASIC, . 





: ALCAN Systems [9]. 





:





, , . . .





The prototype of the radio photonic radar from Ruselectronics
β€œβ€
Functional diagram of the radiation beam former of the radio-optical phased array

-: AIM Photonics [10], Photonics21 [11], EPIC [12], Analog Photonics [13].





: - , . , , , .





: , .





: β€œβ€ β€œβ€   [14]. , PHODIR [15].









: .





- , β€œβ€. . - . , . FPA , , . .





Appearance of the printed circuit board of the SatixFy CAR for IoT tasks.
SatixFy IoT.
Functional diagram of the SatixFy CAR
SatixFy

-: SatixFy [16], Texas instruments [17], Analog Devices [18].





: .





: , , .





: SatixFy [19], . MIDAS DARPA [20].





: .





. , . . . , . Isotropic Solutions.





Isotropic systems terminal on focusing lenses
Isotropic systems

N





Scanning antenna on Rothman lens

-: Isotropic Systems [21].





: , - .





: ( ), . 





: Isotropic Solutions [22]. .





: .





. , , TM . . , , . . . , (VO2, GeTe, BTO .), , .





APV of the Pivotal company
Pivotal
Functional diagram of automatic reclosing Pivotal
Pivotal
Scalar metasurface for circularly polarized radiation
Kymeta u7 antenna aperture
u7 Kymeta

-: Kymeta [23], Pivotal [24], WaveUp [25], MatrixWave [26].





: , , .





: , .





: Kymeta [27]. 





, , . , . , . Kymeta . Pivotal, , . , . , Intel IBM , . . , RF ASIC. , , , . - RF ASIC . , 5 RF ASIC . 





:





  1. [https://www.anokiwave.com] Anokiwave





  2. [https://www.renesas.com/us/en] IDT Renesas





  3. [https://www.analog.com/en/products/adar1000.html#] Analog Devices





  4. [http://www.xphased.com] Xphased





  5. [https://www.hiskysat.com] HiSkySat





  6. [https://vsatman888.livejournal.com/279912.html] ( Starlink RF ASIC)





  7. [https://www.alcansystems.com] ALCAN Systems





  8. [https://www.wafertech.co.il] Wafer





  9. [https://spacewatch.global/2020/06/alcan-announces-electronic-beam-steering-ground-antenna-for-leo-and-meo-satellite-service-use-at-a-low-price-of-eur-1500/] ( ALCAN Systems )





  10. [http://www.aimphotonics.com] AIM Photonics





  11. [https://www.photonics21.org] Photonics21





  12. [https://www.epic-assoc.com/about-epic/] EPIC





  13. [https://www.analogphotonics.com] Analog Photonics





  14. [https://www.vega.su/press-room/?ELEMENT_ID=2422] ( β€œβ€ β€œβ€   )





  15. [http://www.phodir.eu/phodir/project.php] ( PHODIR)





  16. [https://www.satixfy.com] SatixFy





  17. [https://www.ti.com/product/AFE7700] Texas instruments





  18. [https://www.analog.com/ru/index.html] Analog Devices





  19. [https://www.satixfy.com/product/diamond/] ( SatixFy )





  20. [https://www.darpa.mil/program/millimeter-wave-digital-arrays] ( MIDAS DARPA)





  21. [https://www.isotropicsystems.com/solution] Isotropic Solutions





  22. [https://www.satelliteevolutiongroup.com/magazines/Americas-August2020/content/Digital%20Issue%20download.pdf] ( Isotropic Solutions )





  23. [https://www.kymetacorp.com] Kymeta





  24. [https://pivotalcommware.com] Pivotal





  25. [http://www.wave-up.it/technologies/] WaveUp





  26. [https://www.matrixwave.in/sat] MatrixWave





  27. [https://www.kymetacorp.com/news/kymetatm-u8-terminal-receives-commercial-authorization-fcc-q4-2020-launch/] ( Kymeta ) 





:





  1. M. Belkin, A. Sigov, Y. Tyschuk, V. Golovin / Comparison of RF Photonics-Based Beamformers for Super - Wide Bandwidth Phased Array Antennas // IEEE Radio and Antenna Days of the Indian Ocean 2017.





  2. Holographic Beam Forming and Phased Arrays // Pivotal comware White paper / 2019.





  3. Marco Faenzi, Gabriele Minatti, David GonzΓ‘lez-Ovejero, Francesco Caminita, Enrica Martini, Cristian Della Giovampaola, Stefano Maci / Metasurface Antennas: New Models, Applications and Realizations // Nature Scientific report / 2019.





  4. Christian Rohde, Doron Rainish, Avraham Freedman, Guy Lesthievent,   Nader Alagha, Danielle Delaruelle, Gerhard Mocker, Xavier Giraud / Beam-Hopping Systam Configuration and  Terminal Synchronization Schemes / 37th International Communications Satellite Systems Conference (ICSSC) / 2019.





  5. Bill Nevius, Anokiwave, Paul Freud, Ball Aerospace / Enabling Scalable + Affordable SATCOM Solutions / Anokiwave, Inc. / 2020.





  6. Ku-Band Silicon SATCOM Rx Quad Core IC AWMF-0146 / Datasheet / Anokiwave, Inc. / 2020





  7. Nelson J. G. Fonseca / Quasi-optical antennas for space applications / AP-S Seminar Series, University of Toronto / 2020.





  8. Konstantin V. Lemberg, Aleksey N. Kosmynin, Dmitry A. Stupnitsky, Eugene O. Grushevsky, Ivan V. Podshivalov / Tunable Meta-Surface Antenna Array with Holographic Beamforming // Microwave week / 2020.





  9. Application for Blanket License. Federal Communications Commissions // Kymeta Corporation / 2017.





  10. Ryan A. Stevenson, David Fotheringham, Tom Freeman, Turner Noel, Tim Mason, Shahram Shafie / High-Throughput Satellite Connectivity for the Constant Contact Vehicle / Proceedings of the 48th European Microwave Conference / 2017.





  11. Mikala C. Johnson, Bruce Rothaar / Beam Shaping for Reconfigurable Holographic Antannas  / Patent  US 2018 / 0040960 A1 .





  12. Ryan A. Stevenson, Jeff Dallas, Adam Bily, Mike Slota, Mark LaCombe, Nathan Kundtz / Waveguide Feed Structures for Reconfigurable Antenna / Patent US 10,135,148 B2.





  13. Rolf Jakoby, Alexander Gaebler, Christian Weickhmann / Microwave Liquid Crystal Enabling Technology for Electronically Steerable Antennas in SATCOM and 5G Millimeter-Wave Systems / MDPI / 2020.





  14. Yunbo Li, Aobo Li, Tiejun Cui, Daniel F. Sievenpiper / Multiwavelength Multiplexing Hologram Designed Using Impedance Metasurfaces / IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION / 2018





  15. Jiyeon Lee, Daniel F. Sievenpiper / Method for Extracting the Effective Tensor Surface Impedance Function From Nonuniform, Anisotropic, Conductive Patterns / IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION / 2019
















All Articles