3D ML. Part 5: convolutions on graphs







, , β€œβ€ β€” . , , , .







, .







3D ML :







  1. 3D
  2. 3D ML
  3. 3D ML


GitHub .







IT- β€œVR/AR & AI” β€” PHYGITALISM.







?



, . , , , , , , .







, , , .







, β€œRepresentation Learning on Graphs: Methods and Applications” [1]. , Stanford CS224W: Machine Learning with Graphs. Sberloga, , , . ODS, (.. ).







Medium:







  1. How to do Deep Learning on Graphs with Graph Convolutional Networks Tobias Skovgaard Jepsen;
  2. - A Gentle Introduction to Graph Neural Networks (Basics, DeepWalk, and GraphSage) - Hands-on Graph Neural Networks with PyTorch & PyTorch Geometric Kung-Hsiang, Huang (Steeve);
  3. Jan H. Jensen ( );
  4. Medium β€” .


3D ML , , . β€” , (. [15]), , , (. [14]). , 3D ML, .







, , , ( python rdkit python NetworkX). , PyTorch Geometric ( , , ). TensorFlow Graphics β€œSemantic mesh segmentation”, , , . 3D ML .







, 4, , .











.1 [2]: , (Euclidean CNN) , , , (Geometric CNN, ).







β€” , β€œβ€ () . , , ( ). , , , . , , .







, β€œGeometric deep learning: going beyond Euclidean data” [2] ( 3D ML, , ).







:







  • (shift-invariance): (, ) , , . : .
  • (locality): ( , ). , , .
  • (compositionality or hierarchy): , , β€œ ” ( , : , , ..).


. β€” ( ).







, , ( ) ( ).









.2 : MNIST; : . (. [3]).







, , , , . python NetworkX. .







:







import networkx as nx

G = nx.grid_graph([4, 4])
nx.draw(G)
      
      











, .







, W3 times3 . , , β€” Xij . (dot product) ( ), (. ). β€œA guide to convolution arithmetic for deep learning” [4].













, , . , , , , .







, , , β€” ( , , 9 ). .. pooling . , , ,











X1W1+X2W2 neX2W1+X1W2







, . , - .. β€œβ€ . .









.3 [5].







. : β€” ( β€” V , β€” G ), β€” . , ( ) , β€” .







- , , . β€” (averaging) [6] (summation) [7] , W . , . [8].







5 (.4). X1 :











X1=(X1+X2+X3+X4)W1.







, , , , .









.4 X1 .







β€œβ€ . , . , .









, ( MNIST). X(l) β€” l - , W(l) β€” l - . :











X(l+1)=X(l)W(l).







, ( ), , MNIST , 91% ( ).







, ( β€” ). β€” A . . , .









.5 5 ( β€” 0, β€” 1) .







, 28 times28 MNIST. numpy:







import numpy as np
from scipy.spatial.distance import cdist
img_size = 28  # MNIST image width and height
col, row = np.meshgrid(np.arange(img_size), np.arange(img_size))
coord = np.stack((col, row), axis=2).reshape(-1, 2) / img_size
dist = cdist(coord, coord)  # . 6 ( )
sigma = 0.2 * np.pi  # width of a Gaussian
A = np.exp(-dist ** 2 / sigma ** 2) # .6 (  )
      
      





, dist



β€” 282 , A β€” ( , , ). , , β€” , (. [2, 9]).









.6 -: , , 28 times28 .







, A , ..  mathcalA . , :







  1.  mathcalA=A  mathcalAX(l) [7];
  2.  mathcalA= fracA |A |  mathcalAX(l) [6].


, , :











X(l+1)= mathcalAX(l)W(l).







, .







PyTorch, :







import torch
import torch.nn as nn

C = 2  # Input feature dimensionality
F = 8  # Output feature dimensionality
W = nn.Linear(in_features=C, out_features=F)  # Trainable weights

# Fully connected layer
X = torch.randn(1, C)  # Input features
Z = W(X)  # Output features : torch.Size([1, 8])

#Graph Neural Network layer
N = 6  # Number of nodes in a graph
X = torch.randn(N, C)  # Input feature
A = torch.rand(N, N)  # Adjacency matrix (edges of a graph)
Z = W(torch.mm(A, X))  # Output features: torch.Size([6, 8])
      
      





. , MNIST , , . , , , ,  mathcalAX(l) , , , . , , [10, 11, 12].









.7 , , () ().







, , :







import torch.nn as nn           # using PyTorch
nn.Sequential(nn.Linear(4, 64), # map coordinates to a hidden layer
             nn.ReLU(),         # nonlinearity
             nn.Linear(64, 1),  # map hidden representation to edge
             nn.Tanh())         # squash edge values to [-1, 1]
      
      







.8 2D- , , . (, 92,24%), (, 91,05%), (, 92,39%).







gif:
import imageio  # to save GIFs
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.distance import cdist
import cv2  # optional (for resizing the filter to look better)

img_size = 28
# Create/load some adjacency matrix A (for example, based on coordinates)
col, row = np.meshgrid(np.arange(img_size), np.arange(img_size))
coord = np.stack((col, row), axis=2).reshape(-1, 2) / img_size
dist = cdist(coord, coord)  # distances between all pairs of pixels
sigma = 0.2 * np.pi  # width of a Gaussian (can be a hyperparameter when training a model)

A = np.exp(- dist / sigma ** 2)  # adjacency matrix of spatial similarity
# above, dist should have been squared to make it a Gaussian (forgot to do that)

scale = 4
img_list = []
cmap = mpl.cm.get_cmap('viridis')
for i in np.arange(0, img_size, 4):  # for every row with step 4
    for j in np.arange(0, img_size, 4):  # for every col with step 4
        k = i*img_size + j
        img = A[k, :].reshape(img_size, img_size)
        img = (img - img.min()) / (img.max() - img.min())
        img = cmap(img)
        img[i, j] = np.array([1., 0, 0, 0])  # add the red dot
        img = cv2.resize(img, (img_size*scale, img_size*scale))
        img_list.append((img * 255).astype(np.uint8))
imageio.mimsave('filter.gif', img_list, format='GIF', duration=0.2)
      
      





, , ( ), . , , : , , , . (, , ), , [13].









(GNN) β€” , . , . GNN β€” . , GNN .









.9 GNN β€œAnisotropic, Dynamic, Spectral and Multiscale Filters Defined on Graphs”.







, .







, , [6].







, Medium.







:
  1. Hamilton, WL, Ying, R. and Leskovec, J., 2017. Representation learning on graphs: Methods and applications. arXiv preprint arXiv: 1709.05584. [ paper ]
  2. Bronstein, MM, Bruna, J., LeCun, Y., Szlam, A. and Vandergheynst, P., 2017. Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34 (4), pp. 18-42. [ paper ]
  3. Fey, M., Eric Lenssen, J., Weichert, F. and MΓΌller, H., 2018. Splinecnn: Fast geometric deep learning with continuous b-spline kernels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 869-877). [paper]
  4. Dumoulin, V. and Visin, F., 2016. A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285. [paper]
  5. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P. and SΓΌsstrunk, S., 2012. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence, 34(11), pp.2274-2282. [paper]
  6. Kipf, T.N. and Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. [paper]
  7. Xu, K., Hu, W., Leskovec, J. and Jegelka, S., 2018. How powerful are graph neural networks?.. arXiv preprint arXiv:1810.00826. [paper]
  8. Hamilton, W., Ying, Z. and Leskovec, J., 2017. Inductive representation learning on large graphs. In Advances in neural information processing systems (pp. 1024-1034). [paper]
  9. Defferrard, M., Bresson, X. and Vandergheynst, P., 2016. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29, pp.3844-3852. [paper]
  10. Jia, X., De Brabandere, B., Tuytelaars, T. and Gool, L.V., 2016. Dynamic filter networks. In Advances in neural information processing systems (pp. 667-675). [paper]
  11. Simonovsky, M. and Komodakis, N., 2017. Dynamic edge-conditioned filters in convolutional neural networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3693-3702). [paper]
  12. Knyazev, B., Lin, X., Amer, M.R. and Taylor, G.W., 2018. Spectral multigraph networks for discovering and fusing relationships in molecules. arXiv preprint arXiv:1811.09595. [paper]
  13. Knyazev, B., Lin, X., Amer, M.R. and Taylor, G.W., 2019. Image classification with hierarchical multigraph networks. arXiv preprint arXiv:1907.09000. [paper]
  14. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M. and Solomon, J.M., 2019. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5), pp.1-12. [paper]
  15. Verma, N., Boyer, E. and Verbeek, J., 2018. Feastnet: Feature-steered graph convolutions for 3d shape analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2598-2606). [paper]



All Articles