Every time the cherished question arises, whether to upgrade the cards in the server room or not, I look through similar articles and watch such videos (no, marketing materials from Nvidia, of course, cannot be trusted, as the recent case with the number of CUDA cores showed).
Channel "This Computer" is very much underestimated, but the author does not deal with ML. In general, when analyzing comparisons of accelerators for ML, several things usually catch your eye:
- The authors usually take into account only the "adequacy" for the market of new cards in the United States;
- The ratings are far from the people and are done on very standard grids (which is probably good overall) without details;
- The popular mantra to train more and more gigantic grids makes adjustments to the comparisons;
You don't need to be seven inches in the forehead to know the obvious answer to the question "which card is better?": Cards of the 20 * series did not go to the masses, the 1080 Ti with Avito is still very attractive (and, oddly enough, probably this reason).
, Multi-Instance-GPU 100 TF32 Ampere (3090 100). :
- Ampere? ( β );
- A100 ( β β );
- , A100 - ( β );
- MIG ( β , );
.
. :
- 3090 30-40% . ;
- A100 . Nvidia 1 , ;
- , PCIE A100 ATX ( Nvidia , , "" );
- 3080 ( , ) , .. , - ( , 1 , );
β β . , , "" ( ) - - .
Nvidia, 3090 100 15-20 , Maxwell Pascal. , :
- 4 * 1080 Ti (Pascal) 75-80 100% ;
- 3 * Titan X (Maxwell) 85 100% ;
- 3 * 3090 (Ampere) 60-70 100% ;
- , , " ";
- "", ;
"" β 3 :
- ;
- 3090 , , ;
- 3090 ( - , );
, - ?
, , ( , ), gpu-burn
. , , .
Test | GPU | Gflop/s |
---|---|---|
./gpu_burn 120
|
Titan X (Maxwell) | 4,300 |
./gpu_burn 120
|
1080 Ti (Pascal) | 8,500 |
./gpu_burn 120
|
3090 (Ampere) | 16,500 |
./gpu_burn 120
|
A100 (wo MIG) | 16,700 |
./gpu-burn -tc 120
|
3090 (Ampere) | 38,500 |
./gpu-burn -tc 120
|
A100 (wo MIG) | 81,500 |
MIG , .
, 1080 Ti Titan X "" ( ). Nvidia, / β - 3-4 . . A100 Nvidia . 1080Ti , 50 100 .
GPU | Mem | |
---|---|---|
Titan X (Maxwell) | 12G | 10,000 () |
1080 Ti | 11G | 25,000 () |
3090 (Ampere) | 24G | 160,000+ () |
A100 (wo MIG) | 40G | US$12,500 () |
.
3090 A100 c MIG
3090
β . , 3090 100 2-3 1080 Ti, 1 2-3 1080 Ti 4 PCIE 12 ? 3-4 PCIE A100 , compute instance MIG?
β , β , .
? , 8 β 16 4-5 , ATX . DGX Workstation DGX 50% , Mikrotik Gigabyte.
( PNY c Quadro, ). 7 ( 7 PCIE ), "" ( ). PCIE 4.0 , .
:
- β Spech-to-Text ;
- - β 50 β ;
- AMP ( , ), . , . β , ;
- β sequence-to-sequence, . ( ), ;
- , ( );
, . , .
β Distributed Data Parallel PyTorch (DDP, "" ) 1 1 . 1 1+ . 2 1 , IO / compute / RAM. 1080 Ti 2 1 ( 5-10% 40-50%). β exception.
RuntimeError: NCCL error in: /opt/conda/conda-bld/pytorch_1603729096996/work/torch/lib/c10d/ProcessGroupNCCL.cpp:784, invalid usage, NCCL version 2.7.8
. - - , - TF32 ( ), - MPS 3090 :
- Titan X 1080 Ti (~16 GB 7-8 GB);
- 3 , Titan X (Maxwell);
- [ 1080 Ti];
- β 90%;
2 DDP 1 , 2 "" , β . 2 * 3090 :
| Epoch time, m | Type | Workers | Batch | Params | |-----------------|------|---------|---------|----------------------| | exception | DDP | 4 | 50 * 4 | | | 3.8 | DDP | 2 | 50 * 2 | | | 3.9 | DDP | 2 | 50 * 2 | cudnn_benchmark=True | | 3.6 | DDP | 2 | 100 * 2 | |
, Nvidia MPS 2 , PyTorch RPC-. , ( ).
, 3090 . , , "" (, ), 2-3 . 2-3 , .
TLDR:
- 3090 ( β 3090 2 8- , 2000- 4-5 , 2 );
- 10-20 ;
- (, ), β ;
- β ;
A100 MIG
, , 100 , 3 1 . AMP / FP16, 100 .
A100 MIG (Multi Instance GPU). " " "" Compute Instances, .
, , :
+--------------------------------------------------------------------------+ | GPU instance profiles: | | GPU Name ID Instances Memory P2P SM DEC ENC | | Free/Total GiB CE JPEG OFA | |==========================================================================| | 0 MIG 1g.5gb 19 0/7 4.75 No 14 0 0 | | 1 0 0 | +--------------------------------------------------------------------------+ | 0 MIG 2g.10gb 14 0/3 9.75 No 28 1 0 | | 2 0 0 | +--------------------------------------------------------------------------+ | 0 MIG 3g.20gb 9 0/2 19.62 No 42 2 0 | | 3 0 0 | +--------------------------------------------------------------------------+ | 0 MIG 4g.20gb 5 0/1 19.62 No 56 2 0 | | 4 0 0 | +--------------------------------------------------------------------------+ | 0 MIG 7g.40gb 0 0/1 39.50 No 98 5 0 | | 7 1 1 | +--------------------------------------------------------------------------+
, , A100 ( FP16) 2 3090? 4 A100 12 1080 Ti? "-" ?
:
MIG supports running CUDA applications by specifying the CUDA device on which the application should be run. With CUDA 11, only enumeration of a single MIG instance is supported. CUDA applications treat a CI and its parent GI as a single CUDA device. CUDA is limited to use a single CI and will pick the first one available if several of them are visible. To summarize, there are two constraints: - CUDA can only enumerate a single compute instance - CUDA will not enumerate non-MIG GPU if any compute instance is enumerated on any other GPU Note that these constraints may be relaxed in future NVIDIA driver releases for MIG.
, , , 2 , . , , , 1 "" ( ""). , Nvidia , "1 β 1 " " 7 ".
:
There is no GPU-to-GPU P2P (both PCIe and NVLINK) support in MIG mode, so MIG mode does not support multi-GPU or multi-node training. For large models or models trained with a large batch size, the models may fully utilize a single GPU or even be scaled to multi-GPUs or multi-nodes. In these cases, we still recommend using a full GPU or multi-GPUs, even multi-nodes, to minimize total training time.
MIG , (slices), Compute Instances β . It just works.
( DP DDP), A100 10, 20, 30 ( ), 1 .
1 A100 β 2-3 ,
Avg epoch time, m | Workers | Batch | GPUs | CER @10 hours | CER @20 h | CER @30 h | Comment |
---|---|---|---|---|---|---|---|
4.7 | 2, DDP | 50 * 2 | 2 * 3090 | 14.4 | 12.3 | 11.44 | Close to 100% utilization |
15.3 | 1, DP | 50 | 2 * Titan X | 21.6 | 17.4 | 15.7 | Close to 100% utilization |
11.4 | 1, DDP | 50 * 1 | 1 * A100 | NA | NA | NA | About 35-40% utilization |
TBD | 2, DDP | 50 * 2 | 2 * 1080 Ti | TBD | TBD | TBD |
1080 Ti 1 .
3090:
- , . x2 . AMP β x3-x4;
- , , . - 30-40% ;
- . ;
- β 2 8- ;
A100:
- , ( 2-3 3090);
- , Nvidia β , ;
- ( 1080 Ti PNY Quadro) , value for money;
- MIG;
- 40 GB compute, ;
- PCIE ATX , "" ;
Update 1
gpu-burn CUDA_VISIBLE_DEVICES
CUDA_VISIBLE_DEVICES
PyTorch
Test | GPU | Gflop/s | RAM |
---|---|---|---|
./gpu_burn 120 | A100 // 7 | 2,400 * 7 | 4.95 * 7 |
./gpu_burn 120 | A100 // 3 | 4,500 * 3 | 9.75 * 3 |
./gpu_burn 120 | A100 // 2 | 6,700 * 2 | 19.62 * 2 |
./gpu_burn 120 | A100 (wo MIG) | 16,700 | 39.50 * 1 |
./gpu-burn -tc 120 | A100 // 7 | 15,100 * 7 | 4.95 * 7 |
./gpu-burn -tc 120 | A100 // 3 | 30,500 * 3 | 9.75 * 3 |
./gpu-burn -tc 120 | A100 // 2 | 42,500 * 2 | 19.62 * 2 |
./gpu-burn -tc 120 | A100 (wo MIG) | 81,500 | 39.50 * 1 |
Update 2
3 gpu-burn
MIG
Update 3
DDP MIG PyTorch.
() .
def main(rank, args): os.environ["CUDA_VISIBLE_DEVICES"] = args.ddp.mig_devices[rank] import torch ...
With NCCL I got the same exception. Changing nccl
to gloo
it started ... but the work was sooooo slow. Well, conventionally, it is ten times slower and the utilization of the card was at a very low level. I think there is no point in digging further.