Deep neural networks in computer vision: how they work, where they are used and what problems arise

If you have a general idea of ​​how computer vision works but are hungry for details, then this article is for you. 

Object recognition by a neural network on Nvidia systems
Object recognition by a neural network on Nvidia systems

β€” , , . : , .

, , , .

, - , , .

, .

! deep learning’ β€” . 30 . β€” Huawei, Airbus, Bosch, Louis Vuitton, Sahara Force India Formula 1 team.

Β« Β» . 

β€” , , . 

40- , - . . . β€” . , , Β« Β»: , .

90-, , . 2014 , , . .

. . , . , .

, .

β€” , .

β€” , , , .

, . , , , , . , .

β€” , .

An example of object detection in the photo
... and identification
…

. β€” β€” , .

( ). , .

β€” , β€” , . - 0 255, .

Bitmap pixels and their brightness in single-byte encoding 
 

  . , . β€” ,   .

Building a color image at the dawn of photography
Constructing a color image from pixels of red, blue and green colors
,

, , . 

. , .

What the basic task of categorizing an image looks like

: (, ) ( ). , , .

Types of classification problems

, . : , . , , . - , .

, . , . , , , - .

Conditional scheme for solving the classification problem

β€” , . :

An example of the simplest decision tree

. , , , . 

, , - .

( , ) β€” , .

Examples of features that can be used to categorize photos
,

?

. , , , , , . 

β€” , «» , ( ), . , , , , :

β€” , ():

, , , :

, . , , , . , «».

? , , . , . , , (, ) .

Solving the classification problem using a neural network

: , . .

2010 , ImageNet, 10 . , : , .

.

Examples of bases of marked-up images

, , .

, . - . , . ( Transfer Function β€” ), β€” , β€” . . .

An example of sequential application of filters to an image

, . . , β€” . - .

, , , , - . 60 β€” .

, 2010- 2015 , , , .

      2010-  2015  ( β€” )
2010- 2015 ( β€” )

3–3,5%, , . 4–5%.

, , . , .

, , , . , . , . , -, . .

, , , CPU .

Nvidia MythBusters

(GPU), . . , , , .

?

, , , . 

, , 3D.

.

 , ,  ,
, , ,

, , , , .

 ,  ,
, ,

, , . , . . , , , Β« Β».

, , , , , , .

Google. . , ( ). , ( ). .

. .

β€” . , , ? , . 

,
,

. 99%.

.

, , . :

   : Β«    ,        Β»
: Β« , Β»

, , , . , , . , , .

β€” , , . .

, , , .

. . . , Amazon , .

, . , .

β€” , .

, . .

.

.

, , : , .

 ,
,

.

     .
.

, , . β€” , ( «» ). , , . .

, , . , ( , ) , .

( ). β€” , , , , . 

    ,       (   β€” )
, ( β€” )

, , : , , . , .

, . , , , . , , , . , . . 

β€” , . , , . , . . , . 

β€” . , . . β€” . , . , , .

3D-  ,       .    : 12  .
3D- , . : 12 .

, , , , . . , (). , , . 

, , , .

, , . , . , - , . 

, . , , , , , . , . . , .

     β€”      β€”
β€” β€”

, . . . , , ( ). 

, , , . , , . fMRI- ( , , ). , . , .

, Amazon Go. . , . . .

   Amazon Go   (: SounderBruce, CC BY-SA 4.0)
Amazon Go (: SounderBruce, CC BY-SA 4.0)

β€” . , , , , .

Recognition of product display by photo

, . .

β€” . , β€” .

3D positioning using a neural network to help an autonomous vehicle navigate through space
3D ,

, , , , , , . , .

Visual navigation using neural networks that allows an autonomous car to accurately determine the distance to surrounding objects
,

. , , . . , ImageNet 10 .

, , - . .

β€” . . , . 

-, . , . .

, , , , . , .

, .

-, . : . , .

. , (: spectrum.ieee.org)

, , .

«» (: spectrum.ieee.org)

. , .

. . : , . .

For deception, they use a base printed on a 3D printer, which is pasted over with photographs
3D- ,

, , .

β€” . ? , . β€” . , .




All Articles