Waves of Moscow Renovation



Good day, dear readers of habr, on August 12, 2020, the stages of moving under the renovation program were published (you can find it here ) and I wondered how it would look if these stages were visualized. Here it is necessary to clarify that I am in no way connected with the Moscow government, but I am the happy owner of an apartment in a building for renovation, so I was interested to see, maybe even with some accuracy guess where the renovation wave might move in my case (and maybe in yours, if you are interested in this, dear reader). Of course, an accurate forecast will not work, but at least it will be possible to see the picture from a new angle.



UPD August 28, 2020 We

got a complete renovation map with renovation waves and launch sites marked on it.



Introduction



2017 . 350 , , .



, . 5174 .



… ( )



12 2020 . № 45/182/-335/20 ( ) 2032 ( ):



  • 2020 — 2024., 930 , 3-29
  • 2025 — 2028., 1636 , 30-76
  • 2029 — 2032., 1809 , 77-128
  • ( 1 2021.) — 688 , 129-148




github .



  • , . , .


wave1.ipynb (obsolete)



, .. — pdf , tabula pdf .



import pandas as pd
import numpy as np
import requests
from tabula import read_pdf
import json
import os


, , .



test = read_pdf('prikaz_grafikpereseleniya.pdf', pages='3', pandas_options={'header':None})


test.head()




0 1 2 3 4 5
0 No / NaN unom
1 1 ., .49 c.4 NaN 1316
2 2 ., .77 c.3 NaN 1327
3 3 ., .2/26 NaN 19328
4 4 ., .3 NaN 31354




, , , parse_pdf_table.



def parse_pdf_table(pages, pdf_file='prikaz_grafikpereseleniya.pdf'):
    df = read_pdf(pdf_file, pages=pages, pandas_options={'header':None})

    #    
    df = df[~(df.iloc[:,0] == 'No /')]

    #    
    df = df.iloc[:,1:4]
    df.columns = ['AO', 'district', 'address']

    return df


, , .. , pdf . ( , .. )



wave_1 = parse_pdf_table('3-29') # 2020 - 2024
wave_1['wave'] = 1


wave_1.shape


(930, 4)


wave_2 = parse_pdf_table('30-76') # 2025 - 2028
wave_2['wave'] = 2


wave_2.shape


(1636, 4)


wave_3 = parse_pdf_table('77-128') # 2029 - 2032
wave_3['wave'] = 3


wave_3.shape


(1809, 4)


unknown = parse_pdf_table('129-148')
unknown['wave'] = 0


unknown.shape


(688, 4)




(pandas), df.



df = pd.concat([wave_1, wave_2, wave_3, unknown], ignore_index=True)


.



df['marker-color'] = df['wave'].map({1:'#0ACF00',  # 
                                     2:'#1142AA',  # 
                                     3:'#FFFD00',  # 
                                     0:'#FD0006'}) # 


.



df['iconContent'] = df['wave'].map({1:'1',
                                    2:'2',
                                    3:'3',
                                    0:''})


.



df['description'] = df['address']


— , , , , , . ( ! :)





def add_city(x):
    if x['AO'] == '':
        return ', ' + x['address']

    return ', ' + x['address']


df['address'] = df[['AO', 'address']].apply(add_city, axis=1)


, , .. . , .



def geocoder(addr, key='  '):   
    url = 'https://geocode-maps.yandex.ru/1.x'
    params = {'format':'json', 'apikey': key, 'geocode': addr}
    response = requests.get(url, params=params)

    try:
        coordinates = response.json()["response"]["GeoObjectCollection"]["featureMember"][0]["GeoObject"]["Point"]["pos"]
        lon, lat = coordinates.split(' ')
    except:
        lon, lat = 0, 0

    return lon, lat


%%time
df['longitude'], df['latitude'] = zip(*df['address'].apply(geocoder))


CPU times: user 2min 11s, sys: 4.31 s, total: 2min 15s
Wall time: 15min 14s


( , .. , ), - - .



len(df[df['longitude'] == 0])


0


.



df.to_csv('waves.csv')


#df = pd.read_csv('waves.csv')




GeoJSON.



def df_to_geojson(df, properties, lat='latitude', lon='longitude'):
    geojson = {'type':'FeatureCollection', 'features':[]}
    for _, row in df.iterrows():
        feature = {'type':'Feature',
                   'properties':{},
                   'geometry':{'type':'Point',
                               'coordinates':[]}}
        feature['geometry']['coordinates'] = [row[lon],row[lat]]
        for prop in properties:
            feature['properties'][prop] = row[prop]
        geojson['features'].append(feature)
    return geojson


.. , , .



properties = ['marker-color', 'iconContent', 'description']

if not os.path.exists('data'):
    os.makedirs('data')

for ao, data in df.groupby('AO'):
    geojson = df_to_geojson(data, properties)

    with open('data/' + ao + '.geojson', 'w') as f:
        json.dump(geojson, f, indent=2) 


.geojson data. _.geojson .



geojson = df_to_geojson(df, properties)

with open('data/_.geojson', 'w') as f:
    json.dump(geojson, f, indent=2) 




( ) .





, , , , — (.), .1 - — . (. , .), .8//. ( , )



, :(



.



, . , , , , , , , . 39, , . 6, — , . 1, 2, 3, . 38.



( ), , , , .



— !





- , , / .





wave2.ipynb ( 2.0)

2.0



import pandas as pd
import numpy as np
import json
from tabula import read_pdf
from tqdm.notebook import tqdm
import os




with open('renovation_address.txt') as f:
    bounded_addresses = json.load(f)


def parse_pdf_table(pages, pdf_file='prikaz_grafikpereseleniya.pdf'):
    df = read_pdf(pdf_file, pages=pages, pandas_options={'header':None})

    #    
    df = df[~(df.iloc[:,0] == 'No /')]

    df['unom'] = df.iloc[:,-1].combine_first(df.iloc[:,-2])

    #    
    df = df.iloc[:,[1, 2, 3, -1]]
    df.columns = ['AO', 'district', 'description', 'unom']

    return df


wave_1 = parse_pdf_table('3-29') # 2020 - 2024
wave_1['wave'] = 1

wave_2 = parse_pdf_table('30-76') # 2025 - 2028
wave_2['wave'] = 2

wave_3 = parse_pdf_table('77-128') # 2029 - 2032
wave_3['wave'] = 3

unknown = parse_pdf_table('129-148')
unknown['wave'] = 0


df = pd.concat([wave_1, wave_2, wave_3, unknown], ignore_index=True)


df['marker-color'] = df['wave'].map({1:'#0ACF00',  # 
                                     2:'#1142AA',  # 
                                     3:'#FFFD00',  # 
                                     0:'#FD0006'}) # 

df['iconContent'] = df['wave'].map({1:'1',
                                    2:'2',
                                    3:'3',
                                    0:''})


df['longitude'] = 0
df['latitude'] = 0


for i in tqdm(bounded_addresses):
    unom = i['unom']
    coordinates = i['center']['coordinates']

    df.loc[df['unom']==unom, 'longitude'] = coordinates[1]
    df.loc[df['unom']==unom, 'latitude'] = coordinates[0]


HBox(children=(FloatProgress(value=0.0, max=5152.0), HTML(value='')))


#      , ..      
df.loc[(df['AO'] == '') | (df['AO'] == ''), 'AO'] = ''


df[df['longitude'] == 0]




AO district description unom wave marker-color iconContent longitude latitude
917 - . (.-), .11 15000016 1 #0ACF00 1 0.0 0.0
918 - . (.-), .13 15000015 1 #0ACF00 1 0.0 0.0
919 - . (.-), .3 15000013 1 #0ACF00 1 0.0 0.0
925 - . (.-), .4 15000012 1 #0ACF00 1 0.0 0.0
926 - . (.-), .6 15000014 1 #0ACF00 1 0.0 0.0
4883 . (. , .)... 4405823 0 #FD0006 0.0 0.0
4945 . (., /), .51 20000002 0 #FD0006 0.0 0.0
4946 . (., /), .52 20000003 0 #FD0006 0.0 0.0
4947 . (., /), .53 20000001 0 #FD0006 0.0 0.0
4948 . (., /), .85 20000000 0 #FD0006 0.0 0.0
4995 (.), .1 20000004 0 #FD0006 0.0 0.0




,



df.loc[917, ['longitude', 'latitude']] = 37.204805, 55.385382 
df.loc[918, ['longitude', 'latitude']] = 37.205255, 55.385367 
df.loc[919, ['longitude', 'latitude']] = 37.201518, 55.385265 
df.loc[925, ['longitude', 'latitude']] = 37.201545, 55.384927 
df.loc[926, ['longitude', 'latitude']] = 37.204151, 55.384576
df.loc[4883, ['longitude', 'latitude']] = 37.321218, 55.661308 
df.loc[4945, ['longitude', 'latitude']] = 37.476896, 55.604153 
df.loc[4946, ['longitude', 'latitude']] = 37.477406, 55.603895 
df.loc[4947, ['longitude', 'latitude']] = 37.476546, 55.602729 
df.loc[4948, ['longitude', 'latitude']] = 37.477568, 55.604659
df.loc[4995, ['longitude', 'latitude']] = 37.176806, 55.341541




with open('start_area.txt') as f:
    end = json.load(f)


data = {
    'AO':[],
    'district':[],
    'longitude':[],
    'latitude':[],
    'description':[]
}

for i in end['response']:

    data['AO'].append(i['OKRUG'])

    data['district'] = i['AREA']

    coordinates = i['geoData']['coordinates']

    data['longitude'].append(coordinates[1])
    data['latitude'].append(coordinates[0])

    description = i['Address']

    if 'StartOfRelocation' in i:
        if i['StartOfRelocation'] is not None:
            description += '\n' + i['StartOfRelocation']

    data['description'].append(description)

df_start_area = pd.DataFrame(data)
df_start_area['marker-color'] = '#7D3E00' #  
df_start_area['iconContent'] = '0'
df_start_area['unom'] = None
df_start_area['wave'] = -1




df = pd.concat([df, df_start_area], ignore_index=True)




def df_to_geojson(df, properties, lat='latitude', lon='longitude'):
    geojson = {'type':'FeatureCollection', 'features':[]}
    for _, row in df.iterrows():
        feature = {'type':'Feature',
                   'properties':{},
                   'geometry':{'type':'Point',
                               'coordinates':[]}}
        feature['geometry']['coordinates'] = [row[lon],row[lat]]
        for prop in properties:
            feature['properties'][prop] = row[prop]
        geojson['features'].append(feature)
    return geojson


properties = ['marker-color', 'iconContent', 'description']


.



if not os.path.exists('data'):
    os.makedirs('data')

for ao, data in df.groupby('AO'):
    geojson = df_to_geojson(data, properties)

    with open('data/' + ao + '.geojson', 'w') as f:
        json.dump(geojson, f, indent=2) 


( )



geojson = df_to_geojson(df, properties)

with open('data/_.geojson', 'w') as f:
    json.dump(geojson, f, indent=2) 




, , , , , , , .



UPD 28 2020



.



PbIXTOP , .



( )

























UPD 1 2020



Added up-to-date code for forming the map, hid the implementation, because most readers of the article are only interested in the map.



Thank you for attention.




All Articles