Sometimes, sorting through the rubble of large and small video files in a folder (folders), there is no time to look into the contents of each file. This is where the so-called thumbnails come to mind, which allow you to create an idea of the content in the form of cutting fragments from a video.
Let's create a small program that will create thumbnails for each of the files in the current windows folder, and add a timeline to the cut files.
Standard import of modules at the beginning of a python program:
import numpy as np
import cv2
import os
We indicate in which folder to look for files and add a message for the user:
file=file
print('...')
path=r'E:\1'
os.chdir(path)
Here the program processes all files on the E drive in the folder 1.
Next, opencv enters the battle, cuts frames and the timeline to them:
vidcap = cv2.VideoCapture(path+'\\'+file)
fps = vidcap.get(cv2.CAP_PROP_FPS)
#print(fps)
n=12
total_frames = vidcap.get(cv2.CAP_PROP_FRAME_COUNT)
time_line = total_frames / fps
frames_step = total_frames//n
time_line_step=time_line//n
#print(int(time_line_step))
a=[]
b=[]
n - the number of files in the slicing, 12 pieces.
Since the timeline slicing is in seconds, so that it is correctly displayed on frames, let's
add a function that leads to the time format 00:00:00:
def sec_to_time(t):
h=str(t//3600)
m=(t//60)%60
s=t%60
if m<10:
m='0'+str(m)
else:
m=str(m)
if s<10:
s='0'+str(s)
else:
s=str(s)
#print(h+':'+m+':'+s)
t=h+':'+m+':'+s
return t
Now we get the pictures, reduce their size by 50% and save them to disk as intermediate files:
for i in range(n):
vidcap.set(1,i*frames_step)
success,image = vidcap.read()
#
scale_percent = 50
width = int(image.shape[1] * scale_percent / 100)
height = int(image.shape[0] * scale_percent / 100)
image=cv2.resize(image, (width, height))
# c time_line
font = cv2.FONT_HERSHEY_COMPLEX
t=int(time_line_step)*i
image=cv2.putText(image, sec_to_time(t), (100, 30), font, 0.5, color=(0, 0, 255), thickness=0)
cv2.imwrite('image'+str(i)+'.jpg',image)
a.append('image'+str(i)+'.jpg')
vidcap.release()
We glue the resulting files, using opencv, horizontally with each other, observing the order:
def glue (img1,img2,img3,x):
i1 = cv2.imread(img1)
i2 = cv2.imread(img2)
i3 = cv2.imread(img3)
vis = np.concatenate((i1, i2, i3), axis=1)
cv2.imwrite('out'+str(x)+'.png', vis)
b.append('out'+str(x)+'.png')
x=0
while x<len(a):
glue(a[x],a[x+1],a[x+2],x)
x+=3
Glue the resulting "triplets" vertically:
#
def glue2 (img1,img2,img3,img4):
i1 = cv2.imread(img1)
i2 = cv2.imread(img2)
i3 = cv2.imread(img3)
i4 = cv2.imread(img4)
vis = np.concatenate((i1, i2, i3,i4), axis=0)
cv2.imwrite(file[:-4]+'.jpeg', vis)
glue2(b[0],b[1],b[2],b[3])
We clean up the folder by deleting temporary files:
#
c=['jpg', 'png']
for root, dirs, files in os.walk(path):
for file in files:
if file[-3:] in c:
os.remove(file)
We carry out the above procedures for all video files in the folder:
video=['wmv', 'mp4', 'avi', 'mov', 'MP4', '.rm', 'mkv']
for root, dirs, files in os.walk(r'E:/1'):
for file in files:
if file[-3:] in video:
print(' -'+file)
tumbnail(file)
The program code for those to whom I belong, first downloads the code, and then reads the article - download .
PS timeline is not without sin and is a little bit out of touch with the real timeline video.
This is especially noticeable on large video files.