Overview of methods for creating proposal embeddings, Part 1

Imagine how convenient it would be to write a sentence and find a similar one in meaning. To do this, you need to be able to vectorize the entire sentence, which can be a very non-trivial task.



According to the specifics of my work, I have to search for similar requests to the support service, and even with a fairly large markup, it can be difficult to collect the required number of messages that are relevant in the subject, but written in different words.



Below is an overview research on ways to vectorize the entire sentence and not just vectorize, but an attempt to vectorize the sentence, taking into account its meaning.



For example, two phrases 'epl is better than samsung' from 'samsung is better than epl' should be at the opposite end in one of the vector values, but at the same time coincide in others.



An analogy can be made with the picture below. On the scale from cupcake to dog, they are at different ends, and by the number of black dots and the color of the object, they are at one.



https://cdn-media-1.freecodecamp.org/images/1*bt-E2YcPafjiPbZFDMMmNQ.jpeg



Here is a collection of articles on sentence vectorization



The methods in the articles are very non-trivial and interesting to learn, but the disadvantages are that:



  1. they were tested in English
  2. in each article it is written that they have surpassed their predecessors, but the comparisons were made on different datasets and there is no way to make a rating


β€” 7 .









  1. BOW

    1.1. BOW

    1.2. BOW c

    1.3. BOW

    1.4. LDA
  2. ,

    2.1

    2.2

    2.3 tf-idf
  3. Languade Models

    3.1 Language Model on embedings

    3.2 Language Model on index
  4. BERT

    4.1 rubert_cased_L-12_H-768_A-12_pt

    4.2 ru_conversational_cased_L-12_H-768_A-12_pt

    4.3 sentence_ru_cased_L-12_H-768_A-12_pt

    4.4 elmo_ru-news_wmt11-16_1.5M_steps

    4.5 elmo_ru-wiki_600k_steps

    4.6 elmo_ru-twitter_2013-01_2018-04_600k_steps


  5. 5.1 embedings -> embedings

    5.2 embedings -> indexes

    5.3 LSTM -> LSTM

    5.4 LSTM -> LSTM -> indexes
  6. Transfer Learning

    6.1 BOW

    6.2 LSTM + MaxPooling

    6.3 LSTM + Conv1D + AveragePooling

    6.4 LSTM + Inception + Attention
  7. Triplet loss

    7.1 Triplet loss BOW

    7.2 Triplet loss embedings




import pandas as pd
import numpy as np
from collections import defaultdict, Counter
import random
from tqdm.notebook import tqdm
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_distances, euclidean_distances
from sklearn.decomposition import LatentDirichletAllocation

from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical

from tensorflow.keras.layers import Input, Bidirectional, LSTM, Dense, MaxPooling1D, AveragePooling1D, Conv1D
from tensorflow.keras.layers import Flatten, Reshape, Concatenate, Permute, Activation, Dropout, multiply
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.models import Model
from tensorflow.keras.losses import cosine_similarity
from tensorflow.keras import regularizers
import tensorflow.keras.backend as K
import tensorflow as tf

import pymorphy2
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
import numpy as np
import matplotlib.pyplot as plt
import pickle
import os
import re
from conllu import parse_incr








files = {'train': 'ru_syntagrus-ud-train.conllu',
         'test':  'ru_syntagrus-ud-test.conllu',
         'dev':   'ru_syntagrus-ud-dev.conllu'}
database = {}
for data_type in files:
    filename = files[data_type]
    database = {}
    with open(os.path.join('UD_Russian-SynTagRus-master', filename), encoding='utf-8') as f:
        parsed = parse_incr(f)
        for token_list in parsed:
            topic_name = token_list.metadata['sent_id'].split('.')[0]
            #     
            topic_name = re.sub(r'\d+', '', topic_name)
            if topic_name not in database:
                database[topic_name] = []
            sentence = ' '.join([token['form'] for token in token_list]).lower()
            database[topic_name].append(sentence)


, .



choosen_for_evaluation = ['I_slepye_prozreyut',
                          'Interviyu_Mariny_Astvatsaturyan',
                          'Byudzhet']
texts_for_evaluation = {}
texts_for_training = {}
for topic in database:
    if topic in choosen_for_evaluation:
        texts_for_evaluation[topic] = database[topic]
    else:
        texts_for_training[topic] = database[topic]

TEXTS_CORPUS = [sentence for topic in texts_for_training for sentence in texts_for_training[topic]]

#  
for topic in texts_for_evaluation:
    print(topic, len(texts_for_evaluation[topic]))
    for index, sentence in enumerate(texts_for_evaluation[topic]):
        print('\t', sentence[:100])
        if index > 5:
            break
    print('\n')




Byudzhet 70
        .  .
            .
      ii   .
       ,        "  " .
           ,  
             ,  ,  … - 
        "  " ,     

Interviyu_Mariny_Astvatsaturyan 72
     "        " .
     -   ,  ,     ?     ?
     -     ,  1993- .
          "   "    
        ,     ,    -  
              .
           "  " ,    

I_slepye_prozreyut 72
        …
      ,       ,  
                .
         ,    
                
               
       ,    ,     .


get_similarity_values, . .



: 3 70, 72 72 . , , . . .. , +214 , , -213 .. .



= sum(214… 214 β€” 72) β€” sum(214-72… 0) + 7626 = 10395



= -sum(214… 72) + sum(72… 0) + 7626 = -10053



np.random.seed(42)
random.seed(777)

index2topic = {}
index2text = {}
index = 0
for topic in texts_for_evaluation:
    for sentence in texts_for_evaluation[topic]:
        index2topic[index] = topic
        index2text[index] = sentence
        index += 1

def get_similarity_values(sentences):
    return np.random.rand(len(sentences), len(sentences))

chart_methods = {}
bottom_minimum = -7626.2336448598135

def evaluate(get_similarity_values, method_name=None, add_to_chart=True):
    test_messages = [index2text[index] for index in range(len(index2text))]
    distances_each_to_each = get_similarity_values(test_messages)
    evaluations = []
    for target_index in index2topic:
        distances = distances_each_to_each[target_index]
        distances_indexes = sorted(zip(distances, range(len(index2topic))), key=lambda x: x[0])
        evaluation_result = 0
        for i, (distance, index) in enumerate(distances_indexes):
            if index2topic[index] == index2topic[target_index]:
                evaluation_result += len(test_messages) - i
            else:
                evaluation_result -= len(test_messages) - i
        evaluations.append(evaluation_result)        
    #      (baseline)
    result = round(np.mean(evaluations) - bottom_minimum, 1)
    if add_to_chart:
        #  ,      
        if method_name not in chart_methods or result > chart_methods[method_name][0]:
            chart_methods[method_name] = (result, np.std(evaluations))
    return f'{method_name}: {str(result)}'

def parse_result(result):
    return float(new_result.split(': ')[1])

evaluate(get_similarity_values, 'random arrange')


'random arrange: 0.0'



1. BOW



1.1 BOW



, ( ).



count_vectorizer = CountVectorizer()
corpus = TEXTS_CORPUS
count_vectorizer.fit(corpus)

def get_similarity_values(sentences):
    sentences_bow = count_vectorizer.transform(sentences)
    distances = cosine_distances(sentences_bow, sentences_bow)
    return distances

evaluate(get_similarity_values, 'BOW')


'BOW: 693.1'



1.2 BOW



, .



morph = pymorphy2.MorphAnalyzer()

def lemmatize(corpus, verbose=False):
    clear_corpus = []
    if verbose:
        iterator = tqdm(corpus, leave=False)
    else:
        iterator = corpus
    for sentence in iterator:
        tokens = sentence.split() #    
        res = []
        for token in tokens:
            p = morph.parse(token)[0]
            res.append(p.normal_form)
        clear_corpus.append(' '.join(res))
    return clear_corpus

count_vectorizer = CountVectorizer()
corpus = lemmatize(TEXTS_CORPUS, True)
count_vectorizer.fit(corpus)

def get_similarity_values(sentences):
    sentences_bow = count_vectorizer.transform(lemmatize(sentences))
    distances = cosine_distances(sentences_bow, sentences_bow)
    return distances

evaluate(get_similarity_values, 'BOW   ', False)


'BOW : 1645.8'



1.3 BOW



ru_stopwords = stopwords.words('russian')
ru_stopwords += ['.', ',', '"', '!',
                 '?','(', ')', '-',
                 ':', ';', '_', '\\']

def delete_stopwords(corpus, verbose=False):
    clear_corpus = []
    if verbose:
        iterator = tqdm(corpus, leave=False)
    else:
        iterator = corpus
    for sentence in iterator:
        tokens = sentence.split() #    
        res = []
        without_stopwords = [token for token in tokens if token not in ru_stopwords]
        clear_corpus.append(' '.join(without_stopwords))
    return clear_corpus

count_vectorizer = CountVectorizer()
corpus = lemmatize(delete_stopwords(TEXTS_CORPUS), True)
count_vectorizer.fit(corpus)

def get_similarity_values(sentences):
    sentences_bow = count_vectorizer.transform(lemmatize(delete_stopwords(sentences)))
    distances = cosine_distances(sentences_bow, sentences_bow)
    return distances

evaluate(get_similarity_values, 'BOW      ')


'BOW : 1917.6'



1.4 LDA



def similarity_values_wrapper(lda, count_vectorizer, do_lemmatize=False, do_delete_stopwords=False):
    def get_similarity_values(sentences):
        if do_delete_stopwords:
            sentences = delete_stopwords(sentences)
        if do_lemmatize:
            sentences = lemmatize(sentences)

        sent_vector = count_vectorizer.transform(sentences)
        sent_vector = lda.transform(sent_vector)
        distances = cosine_distances(sent_vector, sent_vector)
        return distances
    return get_similarity_values

lda = LatentDirichletAllocation(n_components=300)
corpus = TEXTS_CORPUS
count_vectorizer = CountVectorizer().fit(corpus)
corpus = count_vectorizer.transform(corpus)
lda.fit(corpus)
get_similarity_values = similarity_values_wrapper(lda, count_vectorizer)

print(evaluate(get_similarity_values, 'LDA', False))

lda = LatentDirichletAllocation(n_components=300)
corpus = lemmatize(TEXTS_CORPUS, True)
count_vectorizer = CountVectorizer().fit(corpus)
corpus = count_vectorizer.transform(corpus)
lda.fit(corpus)
get_similarity_values = similarity_values_wrapper(lda, count_vectorizer, do_lemmatize=True)

print(evaluate(get_similarity_values, 'LDA  ', True))

lda = LatentDirichletAllocation(n_components=300)
corpus = lemmatize(delete_stopwords(TEXTS_CORPUS), True)
count_vectorizer = CountVectorizer().fit(corpus)
corpus = count_vectorizer.transform(corpus)
lda.fit(corpus)
get_similarity_values = similarity_values_wrapper(lda, count_vectorizer, do_lemmatize=True, do_delete_stopwords=True)

print(evaluate(get_similarity_values, 'LDA      ', False))


LDA: 344.7

LDA : 1092.1

LDA : 1077.2



%matplotlib inline
def plot_results():
    methods = sorted(chart_methods.items(), key=lambda x: x[1][0])

    labels = [m[0] for m in methods]
    x_pos = np.arange(len(labels))
    mean = [m[1][0] for m in methods]
    std = [m[1][1] for m in methods]

    # Build the plot
    fig, ax = plt.subplots(figsize=(12,8))
    ax.bar(x_pos,
           mean,
           yerr=std,
           align='center',
           alpha=0.5,
           ecolor='black',
           capsize=10)
    ax.set_ylabel('   ')

    ax.set_xticks(x_pos)
    ax.set_xticklabels(labels, rotation=20, ha='right')
    ax.set_title('  ')
    ax.yaxis.grid(True)
    plt.show()

plot_results()


png



2. ,



.



fasttext.



gensim word2vec.



#   
import fasttext.util
from wikipedia2vec import Wikipedia2Vec
fasttext.util.download_model('ru', if_exists='ignore')

wiki2vec = Wikipedia2Vec.load('ruwiki_20180420_300d.pkl')
ft = fasttext.load_model('cc.ru.300.bin')


2.1



def vectorize(token, use_word2vec=True, use_fasttext=True):
    assert use_word2vec or use_fasttext
    if use_fasttext:
        try:
            fast_text_vector = ft.get_word_vector(token)
        except KeyError:
            fast_text_vector = np.zeros((ft.get_dimension()))

    if use_word2vec:
        try:
            word2vec_vector = wiki2vec.get_word_vector(token)
        except KeyError:
            word2vec_vector = np.zeros((len(wiki2vec.get_word_vector('the'))))

    if use_fasttext and use_word2vec:
        return np.concatenate([word2vec_vector, fast_text_vector])
    elif use_fasttext:
        return np.array(fast_text_vector)
    elif use_word2vec:
        return np.array(word2vec_vector)
    else:
        return 'something went wrong on vectorisation'

print(np.shape(vectorize('any_token')))


def similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances):
    def get_similarity_values(sentences):
        sent_vector = []
        for sentence in sentences:
            sentence_vector = []
            for token in sentence.split():
                sentence_vector.append(vectorize(token, use_word2vec, use_fasttext))
            sent_vector.append(np.mean(sentence_vector, axis=0))
        distances = distance_function(sent_vector, sent_vector)
        return distances
    return get_similarity_values

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings  euclidean_distances  word2vec + fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings  euclidean_distances  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings  euclidean_distances  word2vec'))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances)
print(evaluate(get_similarity_values, '  embedings  cosine_distance  word2vec + fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=cosine_distances)
print(evaluate(get_similarity_values, '  embedings  cosine_distance  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=cosine_distances)
print(evaluate(get_similarity_values, '  embedings  cosine_distance  word2vec'))


embedings euclidean_distances word2vec + fast_text: 1833.6

embedings euclidean_distances fast_text: 913.5

embedings euclidean_distances word2vec: 1941.6

embedings cosine_distance word2vec + fast_text: 2278.1

c embedings cosine_distance fast_text: 829.2

embedings cosine_distance word2vec: 2437.7



2.2



def similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances):
    def get_similarity_values(sentences):
        sentences = delete_stopwords(sentences)
        sent_vector = []
        for sentence in sentences:
            sentence_vector = []
            for token in sentence.split():
                sentence_vector.append(vectorize(token, use_word2vec, use_fasttext))
            sent_vector.append(np.mean(sentence_vector, axis=0))
        distances = distance_function(sent_vector, sent_vector)
        return distances
    return get_similarity_values

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings    euclidean_distances  word2vec + fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings    euclidean_distances  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=euclidean_distances)
print(evaluate(get_similarity_values, '  embedings    euclidean_distances  word2vec'))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True)
print(evaluate(get_similarity_values, '  embedings    cosine_distance  word2vec + fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True)
print(evaluate(get_similarity_values, '  embedings    cosine_distance  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False)
print(evaluate(get_similarity_values, '  embedings    cosine_distance  word2vec'))


embedings euclidean_distances word2vec + fast_text: 2116.9

embedings euclidean_distances fast_text: 1314.5

embedings euclidean_distances word2vec: 2159.1

embedings cosine_distance word2vec + fast_text: 2779.7

embedings cosine_distance fast_text: 2199.0

embedings cosine_distance word2vec: 2814.4



2.3 tf-idf



tf_idf_vectorizer = TfidfVectorizer()
tf_idf_vectorizer.fit(TEXTS_CORPUS)
vocab = tf_idf_vectorizer.get_feature_names()


def similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=cosine_distances):
    def get_similarity_values(sentences):
        sent_vector = [[]]*len(sentences)
        weights_data = tf_idf_vectorizer.transform(sentences).tocoo()
        for row, col, weight in zip(weights_data.row, weights_data.col, weights_data.data):
            sent_vector[row].append(weight*vectorize(vocab[col], use_word2vec, use_fasttext))

        for row in range(len(sent_vector)):
            if not sent_vector[row]:
                sent_vector.append((len(vectorize('zoros_vector'))))
        sent_vector = np.sum(sent_vector, axis=1)
        distances = distance_function(sent_vector, sent_vector)
        return distances
    return get_similarity_values

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True)
print(evaluate(get_similarity_values,'  embedings  tf-idf  cosine_distance  word2vec + fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True)
print(evaluate(get_similarity_values,'  embedings  tf-idf  cosine_distance  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False)
print(evaluate(get_similarity_values,'  embedings  tf-idf  cosine_distance  word2vec', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values,'  embedings  tf-idf  euclidian_distance  word2vec + fast_text', add_to_chart=True))

get_similarity_values = similarity_values_wrapper(use_word2vec=False, use_fasttext=True, distance_function=euclidean_distances)
print(evaluate(get_similarity_values,'  embedings  tf-idf  euclidian_distance  fast_text', add_to_chart=False))

get_similarity_values = similarity_values_wrapper(use_word2vec=True, use_fasttext=False, distance_function=euclidean_distances)
print(evaluate(get_similarity_values,'  embedings  tf-idf  euclidian_distance  word2vec', add_to_chart=False))


embedings tf-idf cosine_distance word2vec + fast_text: -133.6

embedings tf-idf cosine_distance fast_text: 9.0

embedings tf-idf cosine_distance word2vec: -133.6

embedings tf-idf euclidian_distance word2vec + fast_text: 6.4

embedings tf-idf euclidian_distance fast_text: -133.6

embedings tf-idf euclidian_distance word2vec: -133.6



plot_results()


png





, .



max_len = 20
min_len = 5
embedding_size = len(vectorize('any token'))

class EmbedingsDataGenerator():
    def __init__(self, texts_corpus=TEXTS_CORPUS, min_len=5, max_len=20, batch_size=32, batches_per_epoch=100, use_word2vec=True, use_fasttext=True):
        self.texts = texts_corpus
        self.min_len = min_len
        self.max_len = max_len
        self.batch_size = batch_size
        self.batches_per_epoch = batches_per_epoch
        self.use_word2vec = use_word2vec
        self.use_fasttext = use_fasttext
        self.embedding_size = len(vectorize('token', use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext))

    def vectorize(self, sentences):
        vectorized_sentences = []
        for text in sentences:
            text_vec = []
            tokens = str(text).split()
            for token in tokens:
                text_vec.append(vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext))
            vectorized_sentences.append(text_vec)
        vectorized_sentences = pad_sequences(vectorized_sentences, maxlen=self.max_len, dtype='float32')
        return vectorized_sentences

    def __iter__(self):
        for _ in tqdm(range(self.batches_per_epoch), leave=False):
            X_batch = []
            y_batch = []
            finished_batch = False
            while not finished_batch:
                text = random.choice(self.texts)
                tokens = str(text).split()
                if len(tokens) < self.min_len:
                    continue
                x_vec = []
                for token in tokens:
                    token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)
                    if len(x_vec) >= self.min_len:
                        X_batch.append(x_vec)
                        y_batch.append(token_vec)
                        if len(X_batch) == self.batch_size:
                            X_batch = pad_sequences(X_batch, maxlen=self.max_len, dtype='float32')
                            yield np.array(X_batch), np.array(y_batch)
                            finished_batch = True
                            break
                    x_vec.append(token_vec)

class IndexesDataGenerator(EmbedingsDataGenerator):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.token2index = {}
        index = 0
        for text in self.texts:
            tokens = str(text).split()
            for token in tokens:
                if token not in self.token2index:
                    self.token2index[token] = index
                    index += 1

    def __iter__(self):
        for _ in tqdm(range(self.batches_per_epoch), leave=False):
            X_batch = []
            X_batch_indexes = []
            y_batch = []
            finished_batch = False
            while not finished_batch:
                text = random.choice(self.texts)
                tokens = str(text).split()
                if len(tokens) < self.min_len:
                    continue
                x_vec = []
                x_tokens = []
                for token in tokens:
                    token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)
                    if len(x_vec) >= self.min_len:
                        X_batch.append(x_vec)
                        X_batch_indexes.append(to_categorical(x_tokens, num_classes=len(self.token2index)))
                        y_batch.append(self.token2index[token])
                        if len(X_batch) == self.batch_size:
                            X_batch = pad_sequences(X_batch, maxlen=self.max_len, dtype='float32')
                            X_batch_indexes = pad_sequences(X_batch_indexes, maxlen=self.max_len, dtype='int32')
                            y_batch = to_categorical(y_batch, num_classes=len(self.token2index))
                            yield np.array(X_batch), np.array(X_batch_indexes), np.array(y_batch)
                            finished_batch = True
                            break
                    x_vec.append(token_vec)
                    x_tokens.append(self.token2index[token])


, , , 100 32, :



data_generator = EmbedingsDataGenerator()


%%timeit
for x, y in data_generator:
    pass


448 ms Β± 65.6 ms per loop (mean Β± std. dev. of 7 runs, 1 loop each)



data_generator = IndexesDataGenerator()


%%timeit
for x_e, x_i, y_i in data_generator:
    pass


5.77 s Β± 115 ms per loop (mean Β± std. dev. of 7 runs, 1 loop each)



3. Languade Models



. , .

: 20 5.



def similarity_values_wrapper(embedder, vectorizer, distance_function=cosine_distances):
    def get_similarity_values(sentences):
        sent_vec = vectorizer(sentences)
        sent_embedings = embedder(sent_vec)
        distances = distance_function(sent_embedings, sent_embedings)
        return distances
    return get_similarity_values


3.1 Language Model on embedings



def model_builder(data_generator):
    complexity = 500
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X = LSTM(complexity, return_sequences=True)(X)
    X = LSTM(complexity)(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(data_generator.embedding_size, activation='linear')(X)
    model = Model(inputs=inp, outputs=X)
    model.compile(loss=cosine_similarity, optimizer='adam')
    model.summary()
    return model

data_generator = EmbedingsDataGenerator(use_fasttext=False)
next_word_model = model_builder(data_generator)
get_similarity_values = similarity_values_wrapper(next_word_model.predict, data_generator.vectorize)


new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'Language Model on embedings')
        new_result = parse_result(new_result)
        print(i, new_result)
        # stopping condition
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        next_word_model.train_on_batch(x, y)


0 1644.6

3 148.7

6 274.8

9 72.3

12 186.8

15 183.7

18 415.8

21 138.9



3.2 Language Model on token index



def model_builder(data_generator):
    complexity = 200
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X = LSTM(complexity, return_sequences=True)(X)
    X = LSTM(complexity)(X)
    X = Dense(complexity, activation='linear', name='embedding_output')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(len(data_generator.token2index), activation='softmax')(X)
    model = Model(inputs=inp, outputs=X)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    model.summary()
    embedder = Model(inputs=inp, outputs=model.get_layer('embedding_output').output)
    return model, embedder  

data_generator = IndexesDataGenerator()
next_word_model, embedder = model_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)


new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'Language Model on token index')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x_e, x_i, y in data_generator:
        next_word_model.train_on_batch(x_e, y)


0 1700.6

3 404.7

6 255.3

9 379.8

12 195.2

15 160.1

18 530.7

21 701.9

24 536.9



plot_results()


png








All Articles